Effects of microbial agents on the active constituents and rhizosphere bacterial community of Gynostemma pentaphyllum
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • | | | |
  • Comments
    Abstract:

    [Objective] To alleviate the soil microecological imbalance caused by continuous cropping and improve the quality and yield of Gynostemma pentaphyllum, we studied the effects of Streptomyces rochei D74 and the newly developed compound microbial agent T3 on the yield, quality, and rhizosphere bacterial community composition of G. pentaphyllum, aiming to determine the suitable microbial agent for this medicinal plant in continuous cropping and rotational cropping. [Methods] The five-point sampling method was used to determine the yield of G. pentaphyllum per unit area in the field. The content of main active constituents including flavonoids, polysaccharides, and saponins was determined by UV-VIS spectrophotometry and high performance liquid chromatography. The 16S rRNA gene high-throughput sequencing was employed to reveal the rhizosphere bacterial community structure of G. pentaphyllum. [Results] In the Z-zone of rotational cropping, the dry weight, total flavonoids, and total polysaccharides of the T3 group increased by 63.44%, 12.50%, and 32.90%, respectively, compared with those in the control group, and T3 outperformed D74 in improving the yield and quality. In the P-zone of continuous cropping, the dry weight, total flavonoids, and total polysaccharides of the D74 group increased by 77.41%, 112.50%, and 23.10%, respectively, compared with those in the control group, and D74 outperformed T3. The differential microorganisms enriched in the T3 group compared with the control group were beneficial microorganisms such as Novosphingobium and Rhodanbacter, and those enriched in the D74 group were Bradyrhizobium and Nitrospira. [Conclusion] Both T3 and D74 could optimize the microbial community structure in rhizosphere soil and improve the micro-environment for plant growth by recruiting beneficial microorganisms in the soil, thus increasing the content and yield of the active constituents of G. pentaphyllum. D74 and T3 demonstrate better performance in the fields of continuous cropping and rotational cropping, respectively.

    Reference
    [1] 庞敏. 药用植物绞股蓝种质资源研究[D]. 西安: 陕西师范大学硕士学位论文, 2006. PANG M. Study on the different idioplasmic resources of Gynostemma pentaphyllum (Thunb.) Makino[D]. Xi’an: Master’s Thesis of Shaanxi Normal University, 2006(in Chinese).
    [2] 鲍凤霞, 陶泠雪, 章海燕. 绞股蓝有效成分的药理作用研究进展[J]. 中国新药与临床杂志, 2018, 37(1): 11-17. BAO FX, TAO LX, ZHANG HY. Research progress on pharmacological effects of Gynostemma pentaphyllum active ingredients[J]. Chinese Journal of New Drugs and Clinical Remedies, 2018, 37(1): 11-17(in Chinese).
    [3] 李瑜, 覃剑锋, 刘运华, 孙莹莹, 唐晓东. 一种绞股蓝根结线虫的研究初报[J]. 中国农学通报, 2022, 38(22): 110-114. LI Y, QIN JF, LIU YH, SUN YY, TANG XD. A preliminary study on root knot nematode of Gynostemma pentaphyllum[J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 110-114(in Chinese).
    [4] 曹佩. 基于生物肥料的根际微生物结构重建对西洋参生长及品质的影响[D]. 北京: 北京协和医学院硕士学位论文, 2022. CAO P. Effects of rhizosphere microbial structure reconstruction based on biological fertilizer on growth and quality of Panax quinquefolium L.[D]. Beijing: Master’s Thesis of Peking Union Medical College, 2022(in Chinese).
    [5] NAIK K, MISHRA S, SRICHANDAN H, SINGH PK, SARANGI PK. Plant growth promoting microbes: potential link to sustainable agriculture and environment[J]. Biocatalysis and Agricultural Biotechnology, 2019, 21: 101326.
    [6] AZIZOGLU U, YILMAZ N, SIMSEK O, IBAL JC, TAGELE SB, SHIN JH. The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives[J]. 3Biotech, 2021, 11(8): 382.
    [7] XIONG W, GUO S, JOUSSET A, ZHAO QY, WU HS, LI R, KOWALCHUK GA, SHEN QR. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247.
    [8] 赵红杰. 3株放线菌组合菌剂对西瓜枯萎病的防治[D]. 杨凌: 西北农林科技大学硕士学位论文, 2010. ZHAO HJ. Control effect of combining bio-control strains against Fusarium oxysporium F. sp. niveum[D]. Yangling: Master’s Thesis of Northwest A&F University, 2010(in Chinese).
    [9] HUGHES BS, CULLUM AJ, BENNETT AF. Evolutionary adaptation to environmental pH in experimental lineages of Escherichia coli[J]. Evolution, 2007, 61(7): 1725-1734.
    [10] 段佳丽, 薛泉宏, 舒志明, 王东胜, 何斐. 放线菌Act12与腐植酸钾配施对丹参生长及其根域微生态的影响[J]. 生态学报, 2015, 35(6): 1807-1819. DUAN JL, XUE QH, SHU ZM, WANG DS, HE F. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge[J]. Acta Ecologica Sinica, 2015, 35(6): 1807-1819(in Chinese).
    [11] 马军妮. 放线菌对玉米小麦的促生抗旱作用及机理研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2016. MA JN. The study on promotion, drought resistance and mechanism about actinomycetes of maize and wheat[D]. Yangling: Master’s Thesis of Northwest A&F University, 2016(in Chinese).
    [12] LI YL, GUO Q, HE F, LI YZ, XUE QH, LAI HX. Biocontrol of root diseases and growth promotion of the tuberous plant Aconitum carmichaelii induced by actinomycetes are related to shifts in the rhizosphere microbiota[J]. Microbial Ecology, 2020, 79(1): 134-147.
    [13] 黄敏珠, 王栋, 尹忠臣, 吕燊. 紫外分光光度法测绞股蓝片中绞股蓝总苷的含量[J]. 中国中药杂志, 2010, 35(18): 2410-2411. HUANG MZ, WANG D, YIN ZC, LV S. Determination of total gypenosides in Gynostemma pentaphyllum tablets by ultraviolet spectrophotometry[J]. China Journal of Chinese Materia Medica, 2010, 35(18): 2410-2411(in Chinese).
    [14] 彭亮, 李诒光, 陈杰, 饶毅, 季巧遇, 魏惠珍. 不同产地、不同品种绞股蓝总黄酮含量比较研究[J]. 亚太传统医药, 2015, 11(21): 33-35. PENG L, LI YG, CHEN J, RAO Y, JI QY, WEI HZ. Study of total flavounes content in Gynostemma pentaphyllum (Thunb.) Makino from different producing areas and different varieties[J]. Asia-Pacific Traditional Medicine, 2015, 11(21): 33-35(in Chinese).
    [15] 王莹, 阿来·赛坎, 邢亚楠, 田树革. 杜仲叶中总黄酮与总多糖的含量分析[J]. 应用化工, 2016, 45(3): 550-552. WANG Y, Alai·Saikan, XING YN, TIAN SG. Analysis of content of total flavonoids and total polysaccharides in leaves of Eucommia ulmoides Oliv.[J]. Applied Chemical Industry, 2016, 45(3): 550-552(in Chinese).
    [16] 张亚琴, 陈雨, 雷飞益, 李思佳, 石峰, 窦明明, 马留辉, 陈兴福. 药用植物化感自毒作用研究进展[J]. 中草药, 2018, 49(8): 1946-1956. ZHANG YQ, CHEN Y, LEI FY, LI SJ, SHI F, DOU MM, MA LH, CHEN XF. Advances in research on allelopathic autotoxicity effects of medicinal plants[J]. Chinese Traditional and Herbal Drugs, 2018, 49(8): 1946-1956(in Chinese).
    [17] 郭兰萍, 周良云, 康传志, 王红阳, 张文晋, 王升, 王瑞杉, 王晓, 韩邦兴, 周涛, 黄璐琦. 药用植物适应环境胁迫的策略及道地药材“拟境栽培”[J]. 中国中药杂志, 2020, 45(9): 1969-1974. GUO LP, ZHOU LY, KANG CZ, WANG HY, ZHANG WJ, WANG S, WANG RS, WANG X, HAN BX, ZHOU T, HUANG LQ. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivaL. u?der arsenic stress condition[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111202.
    [33] XIE ZC, CHU YK, ZHANG WJ, LANG DY, ZHANG XH. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environmental and Experimental Botany, 2019, 158: 99-106.mposition of rhizosphere bacterial communities[J]. The New Phytologist, 2022, 235(4): 1558-1574.
    [19] 朱斌. 玉米根际高效溶磷菌株的分离鉴定、室内溶磷条件和溶磷效果研究[D]. 重庆: 西南大学硕士学位论文, 2012. ZHU B. The study of high dissolved phosphorus isolation identification, conditions of indoor dissolved phosphorus and dissolved phosphorus effect in rhizophere soil of maize[D]. Chongqing: Master’s Thesis of Southwest University, 2012(in Chinese).
    [20] 李海云, 姚拓, 张榕, 荣良燕, 马亚春, 张惠荣, 罗慧琴, 李政璇, 高亚敏, 张建贵. 红三叶根际促生菌中具生防效果菌株筛选、鉴定及特性研究[J]. 植物营养与肥料学报, 2018, 24(3): 743-750. LI HY, YAO T, ZHANG R, RONG LY, MA YC, ZHANG HR, LUO HQ, LI ZX, GAO YM, ZHANG JG. Screening, identification and characterization of biocontrol bacteria from PGPR in Trifolium pretense[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 743-750(in Chinese).
    [21] 茆振川, 谢丙炎, 杨宇红, 殷楠, 凌键, 李彦. 一株溶蛋白芽孢杆菌及其在防治根结线虫中的应用: CN110172422B[P]. 2020-12-25. MAO ZC, XIE BY, YANG YH, YIN N, LING J, LI Y. Bacillus proteolyticus and application thereof in controlling root-knot nematode: CN110172422B[P]. 2020-12-25(in Chinese).
    [22] 罗兴. 高效促生抗病乌头内生细菌筛选鉴定及应用初探[D]. 绵阳: 西南科技大学硕士学位论文, 2022. LUO X. Screening, identification and application of endophytic bacteria with high efficiency promoting growth and disease resistance of Aconitum carmichaelii Debeaux[D]. Mianyang: Master’s Thesis of Southwest University of Science and Technology, 2022(in Chinese).
    [23] 孟丽媛, 邱涵, 谢瑾, 林星宇, 吴兰, 欧阳双, 魏赛金. 解磷菌、解钾菌和固氮菌的分离筛选与鉴定[J]. 生物灾害科学, 2022, 45(2): 241-246. MENG LY, QIU H, XIE J, LIN XY, WU L, OUYANG S, WEI SJ. Isolation, screening and identification of phosphorus-solubilizing bacteria, potassium-solubilizinc bacteria and nitrogen-fixing bacteria[J]. Biological Disaster Science, 2022, 45(2): 241-246(in Chinese).
    [24] LEE S, KA JO, SONG HG. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil[J]. The Journal of Microbiology, 2012, 50(1): 45-49.
    [25] MELDAU DG, LONG HH, BALDWIN IT. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature[J]. Frontiers in Plant Science, 2012, 3: 112.
    [26] 李凤, 周方园, 张广志, 周红姿, 吴晓青, 吴金娟, 张新建. 促生菌对基质栽培番茄根系细菌群落的影响[J]. 微生物学通报, 2022, 49(2): 583-597. LI F, ZHOU FY, ZHANG GZ, ZHOU HZ, WU XQ, WU JJ, ZHANG XJ. Impacts of growth-promoting bacteria on root bacterial community of tomato in substrate culture[J]. Microbiology China, 2022, 49(2): 583-597(in Chinese).
    [27] SU RL, WU X, HU JL, LI HB, XIAO HB, ZHAO JS, HU RG. Warming promotes the decomposition of oligotrophic bacterial-driven organic matter in paddy soil[J]. Soil Biology and Biochemistry, 2023, 186: 109156.
    [28] YANG Y, DOU YX, WANG BR, XUE ZJ, WANG YQ, AN SS, CHANG SX. Deciphering factors driving soil microbial life-history strategies in restored grasslands[J]. iMeta, 2023, 2(1): e66.
    [29] ZHAO Y, QIN XM, TIAN XP, YANG T, DENG R, HUANG J. Effects of continuous cropping of Pinellia ternata (Thunb.) Breit. on soil physicochemical properties, enzyme activities, microbial communities and functional genes[J]. Chemical and Biological Technologies in Agriculture, 2021, 8(1): 43.
    [30] 温佳旭, 陈雪丽, 肖洋, 万书明, 孙磊, 方海瑞. 土壤中主要溶磷菌种类及其作用机制[J]. 北方园艺, 2023(14): 139-145. WEN JX, CHEN XL, XIAO Y, WAN SM, SUN L, FANG HR. Major phosphorus-dissolving bacteria species in soils and mechanisms of action[J]. Northern Horticulture, 2023(14): 139-145(in Chinese).
    [31] HUANG WJ, LONG CL, LAM E. Roles of plant-associated microbiota in traditional herbal medicine[J]. Trends in Plant Science, 2018, 23(7): 559-562.
    [32] RAHMAN SU, KHALID M, KAYANI SI, TANG KX. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CAO Lin, WANG Yulong, BU Junwen, SONG Tianjiao, LIU Yutao, WEI Xiaomin, LIN Yanbing. Effects of microbial agents on the active constituents and rhizosphere bacterial community of Gynostemma pentaphyllum. [J]. Acta Microbiologica Sinica, 2024, 64(7): 2323-2336

Copy
Share
Article Metrics
  • Abstract:262
  • PDF: 680
  • HTML: 714
  • Cited by: 0
History
  • Received:November 30,2023
  • Revised:March 12,2024
  • Online: July 06,2024
  • Published: July 04,2024
Article QR Code