Biological characteristics and pathogenicity of Corynebacterium pseudotuberculosis cp40-deleted strains constructed by CRISPR/Cas9
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Objective] To establish a more efficient knockout method for the serine protease coding gene (cp40) of Corynebacterium pseudotuberculosis and evaluate the role of this gene in the pathogenicity of C. pseudotuberculosis. [Methods] A vector pEC-cp40gRNA-HDarm, with guide RNA, upstream and downstream sequences flanking cp40 of C. pseudotuberculosis Xuanhan strain (XH02), and spacer, was constructed from pECXK99E. The recombinant vector pEC-cp40gRNA-HDarm was transferred into C. pseudotuberculosis competent cells carrying pCas9gRNA-ccdB to form the CRISPR/Cas9 gene editing system for the deletion of cp40. The roles of cp40 in the pathogenicity of C. pseudotuberculosis were evaluated by comparison of the colony morphology and growth curves between the cp40-deleted (Δcp40) strain and wild type (WT) strain, the viability and interleukin (IL)-1β secretion of J774A.1 macrophages infected with Δcp40 and WT in vitro, and the mortality and organ bacterial loads in mice infected with Δcp40 and WT in vivo. [Results] We successfully constructed the cp40-deleted strain XH02Δcp40 by using the established dual-plasmid CRISPR/Cas9 editing system. Compared with WT (XH02), XH02Δcp40 showed no obvious difference in the colony morphology or growth curve. However, the J774A.1 cells infected with XH02Δcp40 showed decreased lactate dehydrogenase (LDH) release (P=0.06) and propidium iodide (PI) staining ratio (P<0.01) compared with those infected with XH02. The mortality of XH02Δcp40-infected mice reduced by 50% and the bacterial loads in the liver and kidney of XH02Δcp40-infected mice significantly reduced compared with those of XH02-infected mice (P<0.001). [Conclusion] The CRISPR/Cas9 gene editing system established in this study can effectively delete cp40 of C. pseudotuberculosis. The results confirm that cp40 is a virulence-related gene, providing a foundation for subsequent research on the infection of C. pseudotuberculosis based on this gene.

    Reference
    [1] MOUSSA IM, ALI MS, HESSAIN AM, KABLI SA, HEMEG HA, SELIM SA. Vaccination against Corynebacterium pseudotuberculosis infections controlling caseous lymphadenitis (CLA) and oedematous skin disease[J]. Saudi Journal of Biological Sciences, 2016, 23(6): 718-723.
    [2] PEEL MM, PALMER GG, STACPOOLE AM, KERR TG. Human lymphadenitis due to Corynebacterium pseudotuberculosis: report of ten cases from Australia and review[J]. Clinical Infectious Diseases, 1997, 24(2): 185-191.
    [3] TROST E, OTT L, SCHNEIDER J, SCHRÖDER J, JAENICKE S, GOESMANN A, HUSEMANN P, STOYE J, DORELLA FA, ROCHA FS, SOARES SD, D’AFONSECA V, MIYOSHI A, RUIZ J, SILVA A, AZEVEDO V, BURKOVSKI A, GUISO N, JOIN-LAMBERT OF, KAYAL S, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence[J]. BMC Genomics, 2010, 11: 728.
    [4] KESLIN MH, MCCOY EL, MCCUSKER JJ, LUTCH JS. Corynebacterium pseudotuberculosis: a new cause of infectious and eosinophilic pneumonia[J]. The American Journal of Medicine, 1979, 67(2): 43.
    [5] 杨娟娟, 马晓雨, 王晓蕊, 张朝晖, 王珊, 秦慧民, 毛淑红, 路福平. 谷氨酸棒杆菌基因编辑的研究进展[J]. 生物工程学报, 2020, 36(5): 820-828. YANG JJ, MA XY, WANG XR, ZHANG U, WANG S, QIN HM, MAO SH, LU FP. Advances in gene editing of Corynebacterium glutamate[J]. Chinese Journal of Biotechnology, 2020, 36(5): 820-828(in Chinese).
    [6] 赵夏薇, 李晓霞, 袁永丰, 宋艳, 杨睿, 易文毅, 谭静梅, 宋振辉, 王芝英, 周作勇. 伪结核棒状杆菌pld基因无痕缺失株构建及其生物学特性及致病性研究[J]. 微生物学报, 2022, 62(9): 3387-3398. ZHAO XW, LI XX, YUAN YF, SONG Y, YANG R, YI WY, TAN JM, SONG ZH, WANG ZY, ZHOU ZY. Traceless deletion of pld in Corynebacterium pseudotuberculosis and biological characteristics and pathogenicity of the mutant[J]. Acta Microbiologica Sinica, 2022, 62(9): 3387-3398(in Chinese).
    [7] 卞晓萍, 刘青, 孔庆科, 罗洪艳, 李沛. 大肠杆菌CRISPR/Cas9基因编辑系统的建立及验证[J]. 中国兽医学报, 2021, 41(1): 110-116. BIAN XP, LIU Q, KONG QK, LUO HY, LI P. Establishment and verification of Escherichia coli CRISPR/Cas9 gene editing system[J]. Chinese Journal of Veterinary Science, 2021, 41(1): 110-116(in Chinese).
    [8] 汪洋. 布鲁氏菌中CRISPRi与CRISPR/Cas9系统的构建及功能验证[D]. 武汉: 华中农业大学硕士学位论文, 2017. WANG Y. Construction and functional verification of CRISPRi and CRISPR/Cas9 system in Brucella melitensis[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2017(in Chinese).
    [9] LIU J, LIU MS, SHI T, SUN GN, GAO N, ZHAO XJ, GUO X, NI XM, YUAN QQ, FENG JH, LIU ZM, GUO YM, CHEN JZ, WANG Y, ZHENG P, SUN JB. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction[J]. Nature Communications, 2022, 13: 891.
    [10] DORELLA F, ESTEVAM E, CARDOSO P, SAVASSI B, OLIVEIRA S, AZEVEDO V, MIYOSHI A. An improved protocol for electrotransformation of Corynebacterium pseudotuberculosis[J]. Veterinary Microbiology, 2006, 114(3/4): 298-303.
    [11] CHAI QY, YU SS, ZHONG YZ, LU Z, QIU CG, YU Y, ZHANG XW, ZHANG Y, LEI ZH, QIANG LH, LI BX, PANG Y, QIU XB, WANG J, LIU CH. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin[J]. Science, 2022, 378(6616): eabq0132.
    [12] ZHAO NN, LI L, LUO GJ, XIE S, LIN Y, HAN SY, HUANG YY, ZHENG SP. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(8): 599-608.
    [13] WANG B, HU QT, ZHANG Y, SHI RL, CHAI X, LIU Z, SHANG XL, ZHANG Y, WEN TY. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum[J]. Microbial Cell Factories, 2018, 17(1): 63.
    [14] CHO JS, CHOI KR, PRABOWO CPS, SHIN JH, YANG D, JANG J, LEE SY. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum[J]. Metabolic Engineering, 2017, 42: 157-167.
    [15] RESENDE BC, REBELATO AB, D’AFONSECA V, SANTOS AR, STUTZMAN T, AZEVEDO VA, SANTOS LL, MIYOSHI A, LOPES DO. DNA repair in Corynebacterium model[J]. Gene, 2011, 482(1/2): 1-7.
    [16] PENG F, WANG XY, SUN Y, DONG GB, YANG YK, LIU XX, BAI ZH. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system[J]. Microbial Cell Factories, 2017, 16(1): 201.
    [17] BARRAL TD, KALIL MA, MARIUTTI RB, ARNI RK, GISMENE C, SOUSA FS, COLLARES T, SEIXAS FK, BORSUK S, ESTRELA-LIMA A, AZEVEDO V, MEYER R, PORTELA RW. Immunoprophylactic properties of the Corynebacterium pseudotuberculosis-derived MBP:PLD:CP40 fusion protein[J]. Applied Microbiology and Biotechnology, 2022, 106(24): 8035-8051.
    [18] SILVA JW, DROPPA-ALMEIDA D, BORSUK S, AZEVEDO V, PORTELA RW, MIYOSHI A, ROCHA FS, DORELLA FA, VIVAS WL, PADILHA FF, HERNÁNDEZ-MACEDO ML, LIMA-VERDE IB. Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis[J]. BMC Veterinary Research, 2014, 10: 965.
    [19] ALI MQ, KOHLER TP, SCHULIG L, BURCHHARDT G, HAMMERSCHMIDT S. Pneumococcal extracellular serine proteases: molecular analysis and impact on colonization and disease[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 763152.
    [20] ZAWILAK-PAWLIK A, ZARZECKA U, ŻYŁA-UKLEJEWICZ D, LACH J, STRAPAGIEL D, TEGTMEYER N, BÖHM M, BACKERT S, SKORKO-GLONEK J. Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations[J]. Scientific Reports, 2019, 9: 11794.
    [21] ZHOU ZY, LI HX, TIAN SQ, YI WY, ZHOU Y, YANG HY, LI X, WU B, LI XX, WU JJ, WANG ZY, HU SJ, FANG RD. Critical roles of NLRP3 inflammasome in IL-1β secretion induced by Corynebacterium pseudotuberculosis in vitro[J]. Molecular Immunology, 2019, 116: 11-17.
    [22] KUMAR P, NAGARAJAN A, UCHIL PD. Analysis of cell viability by the lactate dehydrogenase assay[J]. Cold Spring Harbor Protocols, 2018, 2018(6): pdb.prot095497.
    [23] NESCERECKA A, HAMMES F, JUHNA T. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining[J]. Journal of Microbiological Methods, 2016, 131: 172-180.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Lü Hong, LI Xincan, NIU Luting, WANG Zhiying, ZHOU Zuoyong. Biological characteristics and pathogenicity of Corynebacterium pseudotuberculosis cp40-deleted strains constructed by CRISPR/Cas9. [J]. Acta Microbiologica Sinica, 2024, 64(7): 2453-2464

Copy
Share
Article Metrics
  • Abstract:307
  • PDF: 647
  • HTML: 550
  • Cited by: 0
History
  • Received:December 21,2023
  • Revised:March 20,2024
  • Online: July 06,2024
  • Published: July 04,2024
Article QR Code