Microbial effects and resulting diseases of electromagnetic radiation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [91]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Electromagnetic radiation is a widespread physical phenomenon and exerts complex and profound effects on microorganisms. Understanding the state and function changes of microorganisms exposed to radiation is helpful to reveal the environmental response mechanisms of microorganisms and discover potential risk factors that threaten human health. By reviewing the relevant articles, we first discuss the damage of different types of electromagnetic radiation, including microwave, infrared, ultraviolet, X-rays, and γ-rays, to microorganisms. Furthermore, we elaborate on the molecular mechanisms by which electromagnetic radiation damages microorganisms from multi-omics. Finally, we reveal the potential relationship between the changes in the microbiome composition and the development of diseases in humans exposed to electromagnetic radiation.

    Reference
    [1] LIU J, LI HR, LIU ZB, MENG XW, HE Y, ZHANG ZT. Study on the process of medical waste disinfection by microwave technology[J]. Waste Management, 2022, 150: 13-19.
    [2] KUTLU N, PANDISELVAM R, SAKA I, KAMILOGLU A, SAHNI P, KOTHAKOTA A. Impact of different microwave treatments on food texture[J]. Journal of Texture Studies, 2022, 53(6): 709-736.
    [3] ZHANG Z, WANG JH, HU YH, WANG L. Microwaves, a potential treatment for bacteria: a review[J]. Frontiers in Microbiology, 2022, 13: 888266.
    [4] GARTSHORE A, KIDD M, JOSHI LT. Applications of microwave energy in medicine[J]. Biosensors, 2021, 11(4): 96.
    [5] SHAW P, KUMAR N, MUMTAZ S, LIM JS, JANG JH, KIM D, SAHU BD, BOGAERTS A, CHOI EH. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation[J]. Scientific Reports, 2021, 11: 14003.
    [6] ABOUD SA, ALTEMIMI AB, AL-HIIPHY ARS, LEE YC, CACCIOLA F. A comprehensive review on infrared heating applications in food processing[J]. Molecules, 2019, 24(22): 4125.
    [7] RASTOGI NK. Recent trends and developments in infrared heating in food processing[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(9): 737-760.
    [8] RIFNA EJ, SINGH SK, CHAKRABORTY S, DWIVEDI M. Effect of thermal and non-thermal techniques for microbial safety in food powder: recent advances[J]. Food Research International, 2019, 126: 108654.
    [9] VANHAELEWYN L, van der STRAETEN D, de CONINCK B, VANDENBUSSCHE F. Ultraviolet radiation from a plant perspective: the plant-microorganism context[J]. Frontiers in Plant Science, 2020, 11: 597642.
    [10] BHARDWAJ SK, SINGH H, DEEP A, KHATRI M, BHAUMIK J, KIM KH, BHARDWAJ N. UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses[J]. The Science of the Total Environment, 2021, 792: 148548.
    [11] TAYLOR W, CAMILLERI E, CRAFT DL, KORZA G, GRANADOS MR, PETERSON J, SZCZPANIAK R, WELLER SK, MOELLER R, DOUKI T, MOK WWK, SETLOW P. DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation[J]. Applied and Environmental Microbiology, 2020, 86(8): e03039-19.
    [12] HU JC, ADAR S. The cartography of UV-induced DNA damage formation and DNA repair[J]. Photochemistry and Photobiology, 2017, 93(1): 199-206.
    [13] COOHILL TP, SAGRIPANTI JL. Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense[J]. Photochemistry and Photobiology, 2008, 84(5): 1084-1090.
    [14] HESSLING M, HAAG R, SIEBER N, VATTER P. The impact of far-UVC radiation (200−230 nm) on pathogens, cells, skin, and eyes-a collection and analysis of a hundred years of data[J]. GMS Hygiene and Infection Control, 2021, 16: Doc07.
    [15] MOOSEKIAN SR, JEONG S, MARKS BP, RYSER ET. X-ray irradiation as a microbial intervention strategy for food[J]. Annual Review of Food Science and Technology, 2012, 3: 493-510.
    [16] PILLAI SD, SHAYANFAR S. Electron beam technology and other irradiation technology applications in the food industry[J]. Topics in Current Chemistry, 2016, 375(1): 6.
    [17] MUNIR MT, FEDERIGHI M. Control of foodborne biological hazards by ionizing radiations[J]. Foods, 2020, 9(7): 878.
    [18] CHENG AC, HOGAN JL, CAFFREY M. X-rays destroy the lamellar structure of model membranes[J]. Journal of Molecular Biology, 1993, 229(2): 291-294.
    [19] AZZAM EI, JAY-GERIN JP, PAIN D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury[J]. Cancer Letters, 2012, 327(1/2): 48-60.
    [20] BYUN KH, CHO MJ, PARK SY, CHUN HS, HA SD. Effects of gamma ray, electron beam, and X-ray on the reduction of Aspergillus flavus on red pepper powder (Capsicum annuum L.) and gochujang (red pepper paste)[J]. Food Science and Technology International, 2019, 25(8): 649-658.
    [21] HARRELL CR, DJONOV V, FELLABAUM C, VOLAREVIC V. Risks of using sterilization by gamma radiation: the other side of the coin[J]. International Journal of Medical Sciences, 2018, 15(3): 274-279.
    [22] TRAMPUZ A, PIPER KE, STECKELBERG JM, PATEL R. Effect of gamma irradiation on viability and DNA of Staphylococcus epidermidis and Escherichia coli[J]. Journal of Medical Microbiology, 2006, 55(Pt 9): 1271-1275.
    [23] SAGE E, SHIKAZONO N. Radiation-induced clustered DNA lesions: repair and mutagenesis[J]. Free Radical Biology & Medicine, 2017, 107: 125-135.
    [24] SEVILLA MD, BECKER D, KUMAR A, ADHIKARY A. Gamma and ion-beam irradiation of DNA: free radical mechanisms, electron effects, and radiation chemical track structure[J]. Radiation Physics and Chemistry, 2016, 128: 60-74.
    [25] KEMPNER ES. Direct effects of ionizing radiation on macromolecules[J]. Journal of Polymer Science Part B, Polymer Physics, 2011, 49(12): 827-831.
    [26] SHELDON JL, KOKJOHN TA, MARTIN EL. The effects of salt concentration and growth phase on MRSA solar and germicidal ultraviolet radiation resistance[J]. Ostomy/Wound Management, 2005, 51(1): 36-38, 42-44, 46.
    [27] SELVESHWARI S, LELE K, DEY S. Genomic signatures of UV resistance evolution in Escherichia coli depend on the growth phase during exposure[J]. Journal of Evolutionary Biology, 2021, 34(6): 953-967.
    [28] ZEIGLER DR, NICHOLSON WL. Experimental evolution of Bacillus subtilis[J]. Environmental Microbiology, 2017, 19(9): 3415-3422.
    [29] WASSMANN M, MOELLER R, REITZ G, RETTBERG P. Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance[J]. Astrobiology, 2010, 10(6): 605-615.
    [30] HARRIS DR, POLLOCK SV, WOOD EA, GOIFFON RJ, KLINGELE AJ, CABOT EL, SCHACKWITZ W, MARTIN J, EGGINGTON J, DURFEE TJ, MIDDLE CM, NORTON JE, POPELARS MC, LI H, KLUGMAN SA, HAMILTON LL, BANE LB, PENNACCHIO LA, ALBERT TJ, PERNA NT, et al. Directed evolution of ionizing radiation resistance in Escherichia coli[J]. Journal of Bacteriology, 2009, 191(16): 5240-5252.
    [31] ORELLANA G, GÓMEZ-SILVA B, URRUTIA M, GALETOVIĆ A. UV-A irradiation increases scytonemin biosynthesis in cyanobacteria inhabiting halites at salar grande, Atacama desert[J]. Microorganisms, 2020, 8(11): 1690.
    [32] KOTHAMASI D, WANNIJN J, van HEES M, NAUTS R, van GOMPEL A, VANHOUDT N, VANDENHOVE H. Exposure to ionizing radiation affects the growth of ectomycorrhizal fungi and induces increased melanin production and increased capacities of reactive oxygen species scavenging enzymes[J]. Journal of Environmental Radioactivity, 2019, 197: 16-22.
    [33] MULLENDERS LHF. Solar UV damage to cellular DNA: from mechanisms to biological effects[J]. Photochemical & Photobiological Sciences, 2018, 17(12): 1842-1852.
    [34] SHIBAI A, TAKAHASHI Y, ISHIZAWA Y, MOTOOKA D, NAKAMURA S, YING BW, TSURU S. Mutation accumulation under UV radiation in Escherichia coli[J]. Scientific Reports, 2017, 7: 14531.
    [35] ALVES IR, VÊNCIO RZ, GALHARDO RS. Whole genome analysis of UV-induced mutagenesis in Caulobacter crescentus[J]. Mutation Research, 2022, 825: 111787.
    [36] HIEKE AS C, PILLAI SD. Escherichia coli cells exposed to lethal doses of electron beam irradiation retain their ability to propagate bacteriophages and are metabolically active[J]. Frontiers in Microbiology, 2018, 9: 2138.
    [37] CASTILLO H, LI XP, SCHILKEY F, SMITH GB. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation[J]. PLoS One, 2018, 13(5): e0196472.
    [38] YUAN ML, CHEN M, ZHANG W, LU W, WANG J, YANG MK, ZHAO P, TANG R, LI XN, HAO YH, ZHOU ZF, ZHAN YH, YU HY, TENG C, YAN YL, PING SZ, WANG YD, LIN M. Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations[J]. PLoS One, 2012, 7(3): e34458.
    [39] WINTENBERG M, MANGLASS L, MARTINEZ NE, BLENNER M. Global transcriptional response of Escherichia coli exposed in situ to different low-dose ionizing radiation sources[J]. mSystems, 2023, 8(2): e0071822.
    [40] LI LF, CHEN ZW, DING XF, SHAN Z, LIU LL, GUO JF. Deep sequencing analysis of the Kineococcus radiotolerans transcriptome in response to ionizing radiation[J]. Microbiological Research, 2015, 170: 248-254.
    [41] LIU JJ, HAO CL, WU L, MADEJ D, CHAN W, LAM H. Proteomic analysis of thioproline misincorporation in Escherichia coli[J]. Journal of Proteomics, 2020, 210: 103541.
    [42] SANTOS AL, MOREIRINHA C, LOPES D, ESTEVES AC, HENRIQUES I, ALMEIDA A, DOMINGUES MR, DELGADILLO I, CORREIA A, CUNHA A. Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy[J]. Environmental Science & Technology, 2013, 47(12): 6306-6315.
    [43] BRUCKBAUER ST, MINKOFF BB, SUSSMAN MR, COX MM. Proteome damage inflicted by ionizing radiation: advancing a theme in the research of miroslav radman[J]. Cells, 2021, 10(4): 954.
    [44] CAO JX, WANG F, LI X, SUN YY, WANG Y, OU CR, SHAO XF, PAN DD, WANG DY. The influence of microwave sterilization on the ultrastructure, permeability of cell membrane and expression of proteins of Bacillus cereus[J]. Frontiers in Microbiology, 2018, 9: 1870.
    [45] LIU JJ, QI MY, YUAN ZC, WONG TY, SONG XF, LAM H. Nontargeted metabolomics reveals differences in the metabolite profiling among methicillin-resistant and methicillin-susceptible Staphylococcus aureus in response to antibiotics[J]. Molecular Omics, 2022, 18(10): 948-956.
    [46] SUDHARSAN M, PRASAD NR, KANIMOZHI G, RISHIIKESHWER BS, BRINDHA GR, CHAKRABORTY A. Redox status and metabolomic profiling of thioredoxin reductase inhibitors and 4 kGy ionizing radiation-exposed Deinococcus radiodurans[J]. Microbiological Research, 2022, 261: 127070.
    [47] JACINAVICIUS FR, GERALDES V, CRNKOVIC CM, DELBAJE E, FIORE MF, PINTO E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria[J]. FEMS Microbiology Ecology, 2021, 97(1): fiaa243.
    [48] BROWN AR, CORREA E, XU Y, AlMASOUD N, PIMBLOTT SM, GOODACRE R, LLOYD JR. Phenotypic characterisation of Shewanella oneidensis MR-1 exposed to X-radiation[J]. PLoS One, 2015, 10(6): e0131249.
    [49] BHATIA SS, PILLAI SD. A comparative analysis of the metabolomic response of electron beam inactivated E. coli O26:H11 and Salmonella typhimurium ATCC 13311[J]. Frontiers in Microbiology, 2019, 10: 694.
    [50] HU W, LI W, CHEN J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP[J]. Letters in Applied Microbiology, 2017, 65(4): 274-280.
    [51] OSKOUEE S, FEGHHI SAH, SOLEIMANI N. Antibiotic susceptibility variations of methicillin-resistant Staphylococcus aureus after gamma irradiation[J]. International Journal of Radiation Biology, 2020, 96(3): 390-393.
    [52] HASAN CM, DUTTA D, NGUYEN ANT. Revisiting antibiotic resistance: mechanistic foundations to evolutionary outlook[J]. Antibiotics (Basel). 2021, 11(1): 40.
    [53] PEZZONI M, PIZARRO RA, COSTA CS. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa[J]. Biofouling, 2018, 34(6): 673-684.
    [54] WANG DL, NING Q, DENG ZQ, ZHANG M, YOU J. Role of environmental stresses in elevating resistance mutations in bacteria: phenomena and mechanisms[J]. Environmental Pollution, 2022, 307: 119603.
    [55] UBEROI A, BARTOW-MCKENNEY C, ZHENG Q, FLOWERS L, CAMPBELL A, KNIGHT SAB, CHAN N, WEI M, LOVINS V, BUGAYEV J, HORWINSKI J, BRADLEY C, MEYER J, CRUMRINE D, SUTTER CH, ELIAS P, MAULDIN E, SUTTER TR, GRICE EA. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor[J]. Cell Host & Microbe, 2021, 29(8): 1235-1248.e8.
    [56] HARRIS-TRYON TA, GRICE EA. Microbiota and maintenance of skin barrier function[J]. Science, 2022, 376(6596): 940-945.
    [57] BURNS EM, AHMED H, ISEDEH PN, KOHLI I, van der POL W, SHAHEEN A, MUZAFFAR AF, AL-SADEK C, FOY TM, ABDELGAWWAD MS, HUDA S, LIM HW, HAMZAVI I, BAE S, MORROW CD, ELMETS CA, YUSUF N. Ultraviolet radiation, both UVA and UVB, influences the composition of the skin microbiome[J]. Experimental Dermatology, 2019, 28(2): 136-141.
    [58] WILLMOTT T, CAMPBELL PM, GRIFFITHS CEM, O’CONNOR C, BELL M, WATSON REB, McBAIN AJ, LANGTON AK. Behaviour and sun exposure in holidaymakers alters skin microbiota composition and diversity[J]. Frontiers in Aging, 2023, 4: 1217635.
    [59] LINDQVIST PG, EPSTEIN E, LANDIN-OLSSON M. Sun exposure-hazards and benefits[J]. Anticancer Research, 2022, 42(4): 1671-1677.
    [60] BOUILLY-GAUTHIER D, JEANNES C, MAUBERT Y, DUTEIL L, Queille-ROUSSEL C, PICCARDI N, MONTASTIER C, MANISSIER P, PIÉRARD G, ORTONNE JP. Clinical evidence of benefits of a dietary supplement containing probiotic and carotenoids on ultraviolet-induced skin damage[J]. British Journal of Dermatology, 2010, 163(3): 536-543.
    [61] VOIGT AY, EMIOLA A, JOHNSON JS, FLEMING ES, NGUYEN H, ZHOU W, TSAI KY, FINK C, OH J. Skin microbiome variation with cancer progression in human cutaneous squamous cell carcinoma[J]. The Journal of Investigative Dermatology, 2022, 142(10): 2773-2782.e16.
    [62] MADHUSUDHAN N, PAUSAN MR, HALWACHS B, DURDEVIĆ M, WINDISCH M, KEHRMANN J, PATRA V, WOLF P, BOUKAMP P, MOISSL-EICHINGER C, CERRONI L, BECKER JC, GORKIEWICZ G. Molecular profiling of keratinocyte skin tumors links Staphylococcus aureus overabundance and increased human β-defensin-2 expression to growth promotion of squamous cell carcinoma[J]. Cancers, 2020, 12(3): 541.
    [63] CIĄŻYŃSKA M, OLEJNICZAK-STARUCH I, SOBOLEWSKA-SZTYCHNY D, NARBUTT J, SKIBIŃSKA M, LESIAK A. Ultraviolet radiation and chronic inflammation-molecules and mechanisms involved in skin carcinogenesis: a narrative review[J]. Life, 2021, 11(4): 326.
    [64] RAMADAN M, HETTA HF, SALEH MM, ALI ME, AHMED AA, SALAH M. Alterations in skin microbiome mediated by radiotherapy and their potential roles in the prognosis of radiotherapy-induced dermatitis: a pilot study[J]. Scientific Reports, 2021, 11: 5179.
    [65] HILL A, HANSON M, BOGLE MA, DUVIC M. Severe radiation dermatitis is related to Staphylococcus aureus[J]. American Journal of Clinical Oncology, 2004, 27(4): 361-363.
    [66] ZHANG YH, WANG X, LI HX, NI C, DU ZB, YAN FH. Human oral microbiota and its modulation for oral health[J]. Biomedicine & Pharmacotherapy, 2018, 99: 883-893.
    [67] SEDGHI L, DiMASSA V, HARRINGTON A, LYNCH SV, KAPILA YL. The oral microbiome: role of key organisms and complex networks in oral health and disease[J]. Periodontology 2000, 2021, 87(1): 107-131.
    [68] HU YJ, WANG Q, JIANG YT, MA R, XIA WW, TANG ZS, LIU Z, LIANG JP, HUANG ZW. Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing[J]. International Journal of Oral Science, 2013, 5(1): 21-25.
    [69] HU YJ, SHAO ZY, WANG Q, JIANG YT, MA R, TANG ZS, LIU Z, LIANG JP, HUANG ZW. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing[J]. PLoS One, 2013, 8(2): e56343.
    [70] GAO L, HU YJ, WANG YX, JIANG WX, HE ZY, ZHU CL, MA R, HUANG ZW. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing[J]. Archives of Oral Biology, 2015, 60(9): 1222-1230.
    [71] LEE CT, GALLOWAY TJ. Pathogenesis and amelioration of radiation-induced oral mucositis[J]. Current Treatment Options in Oncology, 2022, 23(3): 311-324.
    [72] ZHU XX, YANG XJ, CHAO YL, ZHENG HM, SHENG HF, LIU HY, HE Y, ZHOU HW. The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma[J]. EBioMedicine, 2017, 18: 23-31.
    [73] HOU J, ZHENG HM, LI P, LIU HY, ZHOU HW, YANG XJ. Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2018, 129(1): 44-51.
    [74] MOUGEOT JLC, STEVENS CB, ALMON KG, PASTER BJ, LALLA RV, BRENNAN MT, MOUGEOT FB. Caries-associated oral microbiome in head and neck cancer radiation patients: a longitudinal study[J]. Journal of Oral Microbiology, 2019, 11(1): 1586421.
    [75] KRZYŚCIAK W, JURCZAK A, KOŚCIELNIAK D, BYSTROWSKA B, SKALNIAK A. The virulence of Streptococcus mutans and the ability to form biofilms[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33(4): 499-515.
    [76] WANG Z, ZHOU YJ, HAN Q, YE XC, CHEN YY, SUN Y, LIU YQ, ZOU J, QI GH, ZHOU XD, CHENG L, REN B. Synonymous point mutation of gtfB gene caused by therapeutic X-rays exposure reduced the biofilm formation and cariogenic abilities of Streptococcus mutans[J]. Cell & Bioscience, 2021, 11(1): 91.
    [77] WANG Z, YANG G, ZHOU XD, PENG X, LI MY, ZHANG MM, LU D, YANG DQ, CHENG L, REN B. Heavy ion radiation directly induced the shift of oral microbiota and increased the cariogenicity of Streptococcus mutans[J]. Microbiology Spectrum, 2023, 11(4): e0132223.
    [78] LIU JJ, DONG W, ZHAO J, WU J, XIA JQ, XIE SF, SONG XF. Gut microbiota profiling variated during colorectal cancer development in mouse[J]. BMC Genomics, 2022, 23(4): 848.
    [79] LIU JJ, QI MY, QIU CC, WANG F, XIE SF, ZHAO J, WU J, SONG XF. Integrative analysis of the mouse fecal microbiome and metabolome reveal dynamic phenotypes in the development of colorectal cancer[J]. Frontiers in Microbiology, 2022, 13: 1021325.
    [80] AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host & Microbe, 2018, 23(6): 716-724.
    [81] SAHLY N, MOUSTAFA A, ZAGHLOUL M, SALEM TZ. Effect of radiotherapy on the gut microbiome in pediatric cancer patients: a pilot study[J]. PeerJ, 2019, 7: e7683.
    [82] EL ALAM MB, SIMS TT, KOUZY R, BIEGERT GWG, JAOUDE JABI, KARPINETS TV, YOSHIDA-COURT K, WU XG, DELGADO-MEDRANO AY, MEZZARI MP, AJAMI NJ, SOLLEY T, AHMED-KADDAR M, LIN LL, RAMONDETTA L, JAZAERI A, JHINGRAN A, EIFEL PJ, SCHMELER KM, WARGO J, et al. A prospective study of the adaptive changes in the gut microbiome during standard-of-care chemoradiotherapy for gynecologic cancers[J]. PLoS One, 2021, 16(3): e0247905.
    [83] YI YX, SHEN LJ, SHI W, XIA F, ZHANG H, WANG Y, ZHANG J, WANG YQ, SUN XY, ZHANG ZY, ZOU W, YANG W, ZHANG LY, ZHU J, GOEL A, MA YL, ZHANG Z. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study[J]. Clinical Cancer Research, 2021, 27(5): 1329-1340.
    [84] WANG ZQ, WANG QX, WANG X, ZHU L, CHEN J, ZHANG BL, CHEN Y, YUAN ZY. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. Journal of Cellular and Molecular Medicine, 2019, 23(5): 3747-3756.
    [85] LOGE L, FLORESCU C, ALVES A, MENAHEM B. Radiation enteritis: diagnostic and therapeutic issues[J]. Journal of Visceral Surgery, 2020, 157(6): 475-485.
    [86] WANG AP, LING ZX, YANG ZX, KIELA PR, WANG T, WANG C, CAO L, GENG F, SHEN MQ, RAN XZ, SU YP, CHENG TM, WANG JP. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study[J]. PLoS One, 2015, 10(5): e0126312.
    [87] NAM YD, KIM HJ, SEO JG, KANG SW, BAE JW. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing[J]. PLoS One, 2013, 8(12): e82659.
    [88] JIAN YP, ZHANG D, LIU MD, WANG YS, XU ZX. The impact of gut microbiota on radiation-induced enteritis[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 586392.
    [89] ULLUWISHEWA D, ANDERSON RC, McNABB WC, MOUGHAN PJ, WELLS JM, ROY NC. Regulation of tight junction permeability by intestinal bacteria and dietary components[J]. The Journal of Nutrition, 2011, 141(5): 769-776.
    [90] GERASSY-VAINBERG S, BLATT A, DANIN-POLEG Y, GERSHOVICH K, SABO E, NEVELSKY A, DANIEL S, DAHAN A, ZIV O, DHEER R, ABREU MT, KOREN O, KASHI Y, CHOWERS Y. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018, 67(1): 97-107.
    [91] BOSMAN ES, ALBERT AY, LUI H, DUTZ JP, VALLANCE BA. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome[J]. Frontiers in Microbiology, 2019, 10: 2410.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIN Xinghua, ZHU Jingxin, FENG Jundong, LIU Jingjing. Microbial effects and resulting diseases of electromagnetic radiation. [J]. Acta Microbiologica Sinica, 2024, 64(8): 2610-2622

Copy
Share
Article Metrics
  • Abstract:220
  • PDF: 643
  • HTML: 395
  • Cited by: 0
History
  • Received:January 06,2024
  • Revised:April 15,2024
  • Online: August 06,2024
  • Published: August 04,2024
Article QR Code