Deciphering the driving force of straw-decomposing microbiomes in two native forest soils under biogeographically contrasting conditions
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] To investigate the acclimation mechanisms of straw-decomposing microbiomes in response to historically different climate conditions as characterized by extreme temperature distinction, we collected two native forest soil samples from the tropical (annual mean temperature: 25 ℃) and cold-temperate (annual mean temperature: −2 ℃) zones at a distance of 3 860 km. [Methods] Microcosm incubation was conducted at a low temperature (10 ℃), a high temperature (35 ℃), and alternated high and low temperatures (10 ℃/35 ℃). The two native forest soil samples were inoculated for targeted cultivation of straw-decomposing microbiomes. After 12 consecutive weeks of passage, 16S rRNA gene sequencing was carried out to analyze the microbial community composition. [Results] At 10 ℃, higher straw decomposition rate was observed in the forest soil from Changbai Mountain in the cold-temperate zone (15.5%) than that from the tropical zone. At 35 ℃, the decomposition rate in the soil from Sanya in the tropical zone (33.1%) was higher than that from Changbai Mountain The results of linear discriminant analysis effect size (LEfSe) showed that the dominant straw-decomposing genera included Duganella, Pedobacter, Janthinobacterium, and Serratia after 12 weeks of enrichment at 10 ℃ with the forest soil from Changbai Mountain. The dominant genera were Paenibacillus and Rhodanobacter after enrichment at 35 ℃, and Stenotrophomonas, Burkholderia, and Achromobacter after enrichment at 10 ℃/35 ℃. As for the forest soil from the tropical zone, the enriched dominant genera were Pseudomonas, Acinetobacter, and Flavobacterium at 10 ℃, Cupriavidus at 35 ℃, and Enterobacter and Cohnella at 10 ℃/35 ℃. [Conclusion] This study revealed the indicator microbial species for straw decomposition at different temperatures in native forest soils from geographically highly distinct regions with a 3 860 km distance. The results suggest that temperature could have likely played a pivotal role in shaping the microbiomes for straw decomposition. The findings provide a scientific basis for mining the straw-decomposing microbial resources in the cold zone in northeast China and the tropical zone in south China.

    Reference
    Related
    Cited by
Get Citation

XING Yan, LUAN Chang, ZHANG Zhiming, HAN Bing, ZHANG Hong, LI Lujun, RUAN Yunze, ZHANG Jiabao, JIA Zhongjun. Deciphering the driving force of straw-decomposing microbiomes in two native forest soils under biogeographically contrasting conditions. [J]. Acta Microbiologica Sinica, 2024, 64(8): 2901-2917

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 22,2024
  • Revised:April 18,2024
  • Adopted:
  • Online: August 06,2024
  • Published: August 04,2024
Article QR Code