Origin of CRISPR-Cas: progress in research and applications of TnpB and IscB
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [67]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    CRISPR-Cas is a defense system ubiquitous in bacteria and archaea. It has been successfully applied in genome editing in a variety of organisms. At present, CRISPR-Cas9 and CRISPR-Cas12a are the most widely used genome editing tools. However, the large protein sizes of Cas9 and Cas12a (more than 1 000 amino acids (aa)) hinder their delivery. TnpB and IscB (about 400 aa) encoded by the transposon family are considered ancestors of Cas12 and Cas9, respectively, whereas their functions are revealed just recently. They are named as obligate mobile element-guided activity (OMEGA), with the associated RNA named ωRNA. Since then, the OMEGA system has become one of the research hotspots in genome editing. OMEGA systems are diverse, with wide distribution in all the three domains of life. The in-depth research on the OMEGA system will aid in the development of new genome editing tools that are streamlined, efficient, and safe. Here, we reviewed the discovery history, structural characteristics, mechanisms of cleavage, and genome editing applications of OMEGA systems, aiming to lay a foundation for the development and optimization of genome editing tools.

    Reference
    [1] ISHINO Y, SHINAGAWA H, MAKINO K, AMEMURA M, NAKATA A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433.
    [2] BARRANGOU R, FREMAUX C, DEVEAU H, RICHARDS M, BOYAVAL P, MOINEAU S, ROMERO DA, HORVATH P. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
    [3] DELTCHEVA E, CHYLINSKI K, SHARMA CM, GONZALES K, CHAO YJ, PIRZADA ZA, ECKERT MR, VOGEL J, CHARPENTIER E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471: 602-607.
    [4] GARNEAU JE, DUPUIS MÈ, VILLION M, ROMERO DA, BARRANGOU R, BOYAVAL P, FREMAUX C, HORVATH P, MAGADÁN AH, MOINEAU S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468: 67-71.
    [5] BROUNS SJJ, JORE MM, LUNDGREN M, WESTRA ER, SLIJKHUIS RJH, SNIJDERS APL, DICKMAN MJ, MAKAROVA KS, KOONIN EV, van der OOST J. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964.
    [6] JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
    [7] CONG L, RAN FA, COX D, LIN SL, BARRETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
    [8] WANG JY, DOUDNA JA. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643.
    [9] CHENG FY, GONG LY, ZHAO DH, YANG HB, ZHOU J, LI M, XIANG H. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. Journal of Genetics and Genomics, 2017, 44(11): 541-548.
    [10] DU KX, GONG LY, LI M, YU HY, XIANG H. Reprogramming the endogenous type I CRISPR‐Cas system for simultaneous gene regulation and editing in Haloarcula hispanica[J]. mLife, 2022, 1(1): 40-50.
    [11] XU ZL, LI M, LI YR, CAO HL, MIAO L, XU ZC, HIGUCHI Y, YAMASAKI S, NISHINO K, WOO PCY, XIANG H, YAN AX. Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa[J]. Cell Reports, 2019, 29(6): 1707-1717.e3.
    [12] LI SN, LIN DX, ZHANG YW, DENG M, CHEN YX, LV B, LI BS, LEI Y, WANG YP, ZHAO L, LIANG YT, LIU JX, CHEN KL, LIU ZY, XIAO J, QIU JL, GAO CX. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602: 455-460.
    [13] KANG Y, CHU C, WANG F, NIU YY. CRISPR/Cas9-mediated genome editing in nonhuman primates[J]. Disease Models & Mechanisms, 2019, 12(10): dmm039982.
    [14] 龚路遥, 向华. 2020年度诺贝尔化学奖: 源自微生物学前沿研究的重大突破[J]. 科学通报, 2020, 65(36): 4171-4176. GONG LY, XIANG H. Nobel Prize in Chemistry 2020: the great breakthrough from frontier research in microbiology[J]. Chinese Science Bulletin, 2020, 65(36): 4171-4176 (in Chinese).
    [15] YE LJ, ZHAO DD, LI J, WANG YR, LI B, YANG YZ, HOU XT, WANG HB, WEI ZD, LIU XQ, LI YQ, LI SW, LIU YJ, ZHANG XL, BI CH. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J]. Nature Biotechnology, 2024. DOI: https://doi.org/10.1038/s41587-023-02050-w.
    [16] TONG HW, WANG XC, LIU YH, LIU NN, LI Y, LUO JM, MA Q, WU DN, LI JY, XU CL, YANG H. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase[J]. Nature Biotechnology, 2023, 41: 1080-1084.
    [17] ANZALONE AV, RANDOLPH PB, DAVIS JR, SOUSA AA, KOBLAN LW, LEVY JM, CHEN PJ, WILSON C, NEWBY GA, RAGURAM A, LIU DR. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576: 149-157.
    [18] KOMOR AC, KIM YB, PACKER MS, ZURIS JA, LIU DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533: 420-424.
    [19] WANG D, ZHANG F, GAO GP. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors[J]. Cell, 2020, 181(1): 136-150.
    [20] 范杏飞, 顾晶雯, 顾晓燕, 杜丽晶, 蒋俊锋, 王越. CRISPR-Cas系统在动物及植物中不同的递送方式研究进展[J]. 解剖学杂志, 2022, 45(2): 153-156. FAN XF, GU JW, GU XY, DU LJ, JIANG JF, WANG Y. Progress in the study of different delivery modes of CRISPR-Cas system in animals and plants[J]. Chinese Journal of Anatomy, 2022, 45(2): 153-156 (in Chinese).
    [21] 于宗菲, 翁丽涵, 孙诚诚, 曹晓钰, 叶振. CRISPR/Cas9系统技术难关: 脱靶效应及其优化方法[J]. 山东第一医科大学(山东省医学科学院)学报, 2023, 44(1): 74-80. YU ZF, WENG LH, SUN CC, CAO XY, YE Z. Technical difficulties of the CRISPR/Cas9 System: off-target effects and its optimization methods[J]. Journal of Shandong First Medical University & Shandong Academy of Medical Sciences, 2023, 44(1): 74-80 (in Chinese).
    [22] YU ZX, LU ZK, LI JJ, WANG YY, WU PF, LI YN, ZHOU YF, LI BL, ZHANG H, LIU YZ, MA LJ. PEAC-seq adopts prime editor to detect CRISPR off-target and DNA translocation[J]. Nature Communications, 2022, 13: 7545.
    [23] HILLE F, RICHTER H, WONG SP, BRATOVIČ M, RESSEL S, CHARPENTIER E. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259.
    [24] NISHIMASU H, SHI X, ISHIGURO S, GAO LY, HIRANO S, OKAZAKI S, NODA T, ABUDAYYEH OO, GOOTENBERG JS, MORI H, OURA S, HOLMES B, TANAKA M, SEKI M, HIRANO H, ABURATANI H, ISHITANI R, IKAWA M, YACHIE N, ZHANG F, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262.
    [25] ALTAE-TRAN H, KANNAN S, DEMIRCIOGLU FE, OSHIRO R, NETY SP, McKAY LJ, DLAKIĆ M, INSKEEP WP, MAKAROVA KS, MACRAE RK, KOONIN EV, ZHANG F. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases[J]. Science, 2021, 374(6563): 57-65.
    [26] KARVELIS T, DRUTEIKA G, BIGELYTE G, BUDRE K, ZEDAVEINYTE R, SILANSKAS A, KAZLAUSKAS D, VENCLOVAS Č, SIKSNYS V. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease[J]. Nature, 2021, 599: 692-696.
    [27] SAITO M, XU PY, FAURE G, MAGUIRE S, KANNAN S, ALTAE-TRAN H, VO S, DESIMONE A, MACRAE RK, ZHANG F. Fanzor is a eukaryotic programmable RNA-guided endonuclease[J]. Nature, 2023, 620: 660-668.
    [28] LI ZF, GUO RC, SUN XZ, LI GL, SHAO Z, HUO XN, YANG RR, LIU XY, CAO X, ZHANG HN, ZHANG WH, ZHANG XY, MA SY, ZHANG ML, LIU YH, YAO YN, SHI JQ, YANG H, HU CY, ZHOU YS, et al. Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model[J]. Nature Communications, 2024, 15: 831.
    [29] MAKAROVA KS, WOLF YI, IRANZO J, SHMAKOV SA, ALKHNBASHI OS, BROUNS SJJ, CHARPENTIER E, CHENG D, HAFT DH, HORVATH P, MOINEAU S, MOJICA FJM, SCOTT D, SHAH SA, SIKSNYS V, TERNS MP, VENCLOVAS Č, WHITE MF, YAKUNIN AF, YAN W, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18: 67-83.
    [30] KAPITONOV VV, MAKAROVA KS, KOONIN EV. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs[J]. Journal of Bacteriology, 2015, 198(5): 797-807.
    [31] SHMAKOV S, ABUDAYYEH OO, MAKAROVA KS, WOLF YI, GOOTENBERG JS, SEMENOVA E, MINAKHIN L, JOUNG J, KONERMANN S, SEVERINOV K, ZHANG F, KOONIN EV. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397.
    [32] SHMAKOV S, SMARGON A, SCOTT D, COX D, PYZOCHA N, YAN W, ABUDAYYEH OO, GOOTENBERG JS, MAKAROVA KS, WOLF YI, SEVERINOV K, ZHANG F, KOONIN EV. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15: 169-182.
    [33] SIGUIER P, GOURBEYRE E, CHANDLER M. Bacterial insertion sequences: their genomic impact and diversity[J]. FEMS Microbiology Reviews, 2014, 38(5): 865-891.
    [34] HE S, CORNELOUP A, GUYNET C, LAVATINE L, CAUMONT-SARCOS A, SIGUIER P, MARTY B, DYDA F, CHANDLER M, HOANG BT. The IS200/IS605 family and “peel and paste” single-strand transposition mechanism[J]. Microbiology Spectrum, 2015, 3(4): 609-630.
    [35] BOOCOCK MR, RICE PA. A proposed mechanism for IS607-family serine transposases[J]. Mobile DNA, 2013, 4(1): 24.
    [36] CHEN WY, MANDALI S, HANCOCK SP, KUMAR P, COLLAZO M, CASCIO D, JOHNSON RC. Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS 607-family transposition[J]. eLife, 2018, 7: e39611.
    [37] PASTERNAK C, DULERMO R, TON-HOANG B, DEBUCHY R, SIGUIER P, COSTE G, CHANDLER M, SOMMER S. ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB[J]. Molecular Microbiology, 2013, 88(2): 443-455.
    [38] NAKAGAWA R, HIRANO H, OMURA SN, NETY S, KANNAN S, ALTAE-TRAN H, YAO X, SAKAGUCHI Y, OHIRA T, WU WY, NAKAYAMA H, SHUTO Y, TANAKA T, SANO FK, KUSAKIZAKO T, KISE Y, ITOH Y, DOHMAE N, van der OOST J, SUZUKI T, et al. Cryo-EM structure of the transposon-associated TnpB enzyme[J]. Nature, 2023, 616: 390-397.
    [39] SASNAUSKAS G, TAMULAITIENE G, DRUTEIKA G, CARABIAS A, SILANSKAS A, KAZLAUSKAS D, VENCLOVAS Č, MONTOYA G, KARVELIS T, SIKSNYS V. TnpB structure reveals minimal functional core of Cas12 nuclease family[J]. Nature, 2023, 616: 384-389.
    [40] CHEN WZ, MA JC, WU ZW, WANG ZP, ZHANG HY, FU WH, PAN D, SHI J, JI QJ. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors[J]. Molecular Cell, 2023, 83(15): 2768-2780.e6.
    [41] KATO K, OKAZAKI S, KANNAN S, ALTAE-TRAN H, ESRA DEMIRCIOGLU F, ISAYAMA Y, ISHIKAWA J, FUKUDA M, MACRAE RK, NISHIZAWA T, MAKAROVA KS, KOONIN EV, ZHANG F, NISHIMASU H. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9[J]. Nature Communications, 2022, 13(1): 6719.
    [42] SCHULER G, HU CY, KE AL. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9[J]. Science, 2022, 376(6600): 1476-1481.
    [43] BAO WD, JURKA J. Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements[J]. Mobile DNA, 2013, 4(1): 12.
    [44] JIANG KY, LIM J, SGRIZZI S, TRINH M, KAYABOLEN A, YUTIN N, BAO WD, KATO K, KOONIN EV, GOOTENBERG JS, ABUDAYYEH OO. Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses[J]. Science Advances, 2023, 9(39): eadk0171.
    [45] YOON PH, SKOPINTSEV P, SHI HL, CHEN LX, ADLER BA, AL-SHIMARY M, CRAIG RJ, LOI KJ, DeTURK EC, LI Z, AMERASEKERA J, TRINIDAD M, NISONOFF H, CHEN K, LAHIRI A, BOGER R, JACOBSEN S, BANFIELD JF, DOUDNA JA. Eukaryotic RNA-guided endonucleases evolved from a unique clade of bacterial enzymes[J]. Nucleic Acids Research, 2023, 51(22): 12414-12427.
    [46] XIANG GH, LI YQ, SUN J, HUO YY, CAO SW, CAO YW, GUO YY, YANG L, CAI YJ, ZHANG YE, WANG HY. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors[J]. Nature Biotechnology, 2023.
    [47] MEERS C, LE HC, PESARI SR, HOFFMANN FT, WALKER MWG, GEZELLE J, TANG S, STERNBERG SH. Transposon-encoded nucleases use guide RNAs to promote their selfish spread[J]. Nature, 2023, 622: 863-871.
    [48] TAKEDA SN, NAKAGAWA R, OKAZAKI S, HIRANO H, KOBAYASHI K, KUSAKIZAKO T, NISHIZAWA T, YAMASHITA K, NISHIMASU H, NUREKI O. Structure of the miniature type V-F CRISPR-Cas effector enzyme[J]. Molecular Cell, 2021, 81(3): 558-570.e3.
    [49] YAMANO T, ZETSCHE B, ISHITANI R, ZHANG F, NISHIMASU H, NUREKI O. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1[J]. Molecular Cell, 2017, 67(4): 633-645.e3.
    [50] XIAO RJ, LI Z, WANG SK, HAN RJ, CHANG LF. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease[J]. Nucleic Acids Research, 2021, 49(7): 4120-4128.
    [51] WU ZW, ZHANG YF, YU HP, PAN D, WANG YJ, WANG YN, LI F, LIU C, NAN H, CHEN WZ, JI QJ. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nature Chemical Biology, 2021, 17: 1132-1138.
    [52] ZETSCHE B, GOOTENBERG JS, ABUDAYYEH OO, SLAYMAKER IM, MAKAROVA KS, ESSLETZBICHLER P, VOLZ SE, JOUNG J, van der OOST J, REGEV A, KOONIN EV, ZHANG F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
    [53] YAMANO T, NISHIMASU H, ZETSCHE B, HIRANO H, SLAYMAKER IM, LI YQ, FEDOROVA I, NAKANE T, MAKAROVA KS, KOONIN EV, ISHITANI R, ZHANG F, NUREKI O. Crystal structure of Cpf1 in complex with guide RNA and target DNA[J]. Cell, 2016, 165(4): 949-962.
    [54] CHEN JS, MA EB, HARRINGTON LB, da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
    [55] NISHIMASU H, RAN FA, HSU PD, KONERMANN S, SHEHATA SI, DOHMAE N, ISHITANI R, ZHANG F, NUREKI O. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949.
    [56] GASIUNAS G, YOUNG JK, KARVELIS T, KAZLAUSKAS D, URBAITIS T, JASNAUSKAITE M, GRUSYTE MM, PAULRAJ S, WANG PH, HOU ZL, DOOLEY SK, CIGAN M, ALARCON C, CHILCOAT ND, BIGELYTE G, CURCURU JL, MABUCHI M, SUN ZY, FUCHS RT, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs[J]. Nature Communications, 2020, 11: 5512.
    [57] NETY SP, ALTAE-TRAN H, KANNAN S, DEMIRCIOGLU FE, FAURE G, HIRANO S, MEARS K, ZHANG YG, MACRAE RK, ZHANG F. The transposon-encoded protein TnpB processes its own mRNA into ωRNA for guided nuclease activity[J]. The CRISPR Journal, 2023, 6(3): 232-242.
    [58] LU SH, TONG XH, HAN Y, ZHANG K, ZHANG YZ, CHEN QB, DUAN JY, LEI XL, HUANG MH, QIU Y, ZHANG DY, ZHOU X, ZHANG Y, YIN H. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a[J]. Nature Biomedical Engineering, 2022, 6: 286-297.
    [59] XU Y, LIU T, WANG J, XIONG BY, LIU L, PENG N. Reprogramming an RNA-guided archaeal TnpB endonuclease for genome editing[J]. Cell Discovery, 2023, 9: 112.
    [60] ROBERTSON MP, JOYCE GF. The origins of the RNA world[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(5): a003608.
    [61] SUN A, LI CP, CHEN ZH, ZHANG SY, LI DY, YANG Y, LI LQ, ZHAO YQ, WANG KC, LI ZF, LIU JX, LIU ST, WANG J, LIU JJ G. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation[J]. Cell Research, 2023, 33: 229-244.
    [62] RAN FA, CONG L, YAN WX, SCOTT DA, GOOTENBERG JS, KRIZ AJ, ZETSCHE B, SHALEM O, WU XB, MAKAROVA KS, KOONIN EV, SHARP PA, ZHANG F. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520: 186-191.
    [63] KIM DY, LEE JM, BIN MOON S, CHIN HJ, PARK S, LIM Y, KIM D, KOO T, KO JH, KIM YS. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J]. Nature Biotechnology, 2022, 40: 94-102.
    [64] XU XS, CHEMPARATHY A, ZENG LP, KEMPTON HR, SHANG S, NAKAMURA M, QI LS. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing[J]. Molecular Cell, 2021, 81(20): 4333-4345.e4.
    [65] HAN DY, XIAO QQ, WANG YF, ZHANG HN, DONG X, LI GL, KONG XF, WANG SH, SONG JH, ZHANG WH, ZHOU JX, BI LT, YUAN Y, SHI LY, ZHONG N, YANG H, ZHOU YS. Development of miniature base editors using engineered IscB nickase[J]. Nature Methods, 2023, 20: 1029-1036.
    [66] WALTON RT, CHRISTIE KA, WHITTAKER MN, KLEINSTIVER BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296.
    [67] LIANG RH, HE ZX, ZHAO KT, ZHU HC, HU JC, LIU GW, GAO Q, LIU MY, ZHANG R, QIU JL, GAO CX. Prime editing using CRISPR-Cas12a and circular RNAs in human cells[J]. Nature Biotechnology, 2024. DOI: https://doi.org/10.1038/s41587-023-02095-x.
    Cited by
Get Citation

SHI Guangliang, LI Wei, XIANG Hua, GONG Luyao. Origin of CRISPR-Cas: progress in research and applications of TnpB and IscB. [J]. Acta Microbiologica Sinica, 2024, 64(9): 3091-3104

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 07,2024
  • Revised:May 31,2024
  • Online: August 30,2024
  • Published: September 04,2024
Article QR Code