Research progress on natural bioactive molecules against pseudorabies virus infection
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [106]
  • | | | |
  • Comments
    Abstract:

    Pseudorabies virus (PRV) is a member of the genus Varicellovirus in the Herpesviridae family.It primarily causes pseudorabies characterized by reproductive failure in sows,and neurological and respiratory symptoms in piglets,posing a significant threat to pig production.Vaccination is the most important measure to prevent PRV in pigs.However,due to variations of the virus and its latent infection characteristics,the effectiveness of traditional vaccines is compromised.Consequently,there is an urgent need for new drug preparations to assist vaccine immunization.It has been found that natural plant polysaccharides and small molecules such as flavonoids,phenols,and acids can inhibit PRV infection either by directly blocking the viral infection process or by regulating the immune response.In addition,host antiviral protein type I interferon and its downstream interferon-stimulated genes have significant inhibitory effects on PRV infection.Host defense peptides,including antimicrobial peptides and defensins,also show good inhibitory effects on PRV infection.Interestingly,researchers have recently found that extracts and metabolites from bacteria and fungi also exhibit anti-PRV effects,and it is expected that these bacteria and fungi and their products could be applied for the prevention and treatment of viral diseases in the future.This study focused on the recent research progress of natural bioactive molecules against PRV infection,aiming to provide important references for the research and development of anti-PRV infection drugs.

    Reference
    [1] 唐友华. 猪伪狂犬病的诊断与防控[J]. 今日畜牧兽医, 2024, 40(1): 110-112. TANG YH. Diagnosis, prevention and control of porcine pseudorabies[J]. Today Animal Husbandry and Veterinary Medicine, 2024, 40(1): 110-112(in Chinese)
    [2] DENG JH, WU ZY, LIU JQ, JI QY, JU CM. The role of latency-associated transcripts in the latent infection of pseudorabies virus[J]. Viruses, 2022, 14(7): 1379.
    [3] MRAVAK S, BIENZLE U, FELDMEIER H, HAMPL H, HABERMEHL KO. Pseudorabies in man[J]. Lancet, 1987, 1(8531): 501-502.
    [4] HUANG H, WANG N, AI ZB, CHEN J, HUANG W, BAO Y. Cross species transmission of pseudorabies virus leads to human encephalitis and visual impairment: a case report[J]. Frontiers in Neurology, 2022, 13: 950931.
    [5] LIU QY, WANG XJ, XIE CH, DING SF, YANG HN, GUO SB, LI JX, QIN LZ, BAN FG, WANG DF, WANG C, FENG LX, MA HC, WU B, ZHANG LP, DONG CX, XING L, ZHANG JW, CHEN HC, YAN RQ, et al. A novel human acute encephalitis caused by pseudorabies virus variant strain[J]. Clinical Infectious Diseases, 2021, 73(11): e3690-e3700.
    [6] PENG Z, LIU QY, ZHANG YB, WU B, CHEN HC, WANG XR. Cytopathic and genomic characteristics of a human-originated pseudorabies virus[J]. Viruses, 2023, 15(1): 170.
    [7] YANG HN, HAN H, WANG H, CUI Y, LIU H, DING SF. A case of human viral encephalitis caused by pseudorabies virus infection in China[J]. Frontiers in Neurology, 2019, 10: 534.
    [8] PAPAGEORGIOU KV, MICHAILIDOU M, GRIVAS I, PETRIDOU E, STAMELOU E, EFRAIMIDIS K, CHEN L, DREW TW, KRITAS SK. Bartha-K61 vaccine protects nursery pigs against challenge with novel European and Asian strains of suid herpesvirus 1[J]. Veterinary Research, 2022, 53(1): 47.
    [9] ZHOU JZ, LI S, WANG XB, ZOU MM, GAO S. Bartha-K61 vaccine protects growing pigs against challenge with an emerging variant pseudorabies virus[J]. Vaccine, 2017, 35(8): 1161-1166.
    [10] REN QH, LI L, PAN HC, WANG XB, GAO QQ, HUAN CC, WANG J, ZHANG W, JIANG LY, GAO S, KAI Y, CHEN CH. Same dosages of rPRV/XJ5-gI/gE/TK prototype vaccine or Bartha-K61 vaccine similarly protects growing pigs against lethal challenge of emerging vPRV/XJ-5 strain[J]. Frontiers in Veterinary Science, 2022, 9: 896689.
    [11] WANG J, CUI X, WANG XB, WANG WB, GAO S, LIU XF, KAI Y, CHEN CH. Efficacy of the Bartha-K61 vaccine and a gE/gI/TK prototype vaccine against variant porcine pseudorabies virus (vPRV) in piglets with sublethal challenge of vPRV[J]. Research in Veterinary Science, 2020, 128: 16-23.
    [12] 严伟东, 李畅, 于学祥, 何启盖, 杨汉春. Bartha K61株活疫苗对猪伪狂犬变异毒株和传统毒株的免疫保护效力分析[J]. 中国兽医杂志, 2020, 56(7): 15-18, 23,封2. YAN WD, LI C, YU XX, HE QG, YANG HC. The immunoprotection efficacy of Bartha K61 strain attenuated vaccine against pseudorabies variant strain and traditional strains[J]. Chinese Journal of Veterinary Medicine, 2020, 56(7): 15-18, 23, 2(in Chinese)
    [13] 张梦晨. 商品化猪伪狂犬疫苗对猪伪狂犬变异毒株免疫效果评价[D]. 昆明: 云南农业大学硕士学位论文, 2022. ZHANG MC. Evaluation of immune effect of commercial porcine pseudorabies vaccine on porcine pseudorabies variant strain[D]. Kunming: Master's Thesis of Yunnan Agricultural University, 2022(in Chinese)
    [14] QIN YF, QIN SY, HUANG XM, XU LS, OUYANG K, CHEN Y, WEI ZZ, HUANG WJ. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China[J]. Veterinary Microbiology, 2023, 280: 109703.
    [15] POMERANZ LE, REYNOLDS AE, HENGARTNER CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine[J]. Microbiology and Molecular Biology Reviews, 2005, 69(3): 462-500.
    [16] WU BW, ENGEL EA, ENQUIST LW. Characterization of a replication-incompetent pseudorabies virus mutant lacking the sole immediate early gene IE180[J]. MBio, 2014, 5(6): e01850.
    [17] YE GQ, LIU HY, ZHOU QQ, LIU XH, HUANG L, WENG CJ. A tug of war: pseudorabies virus and host antiviral innate immunity[J]. Viruses, 2022, 14(3): 547.
    [18] HOPFNER KP, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nature Reviews Molecular Cell Biology, 2020, 21: 501-521.
    [19] YIN Y, MA JL, WAESBERGHE CV, DEVRIENDT B, FAVOREEL HW. Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell[J]. Frontiers in Immunology, 2022, 13: 1016982.
    [20] KAWAI T, AKIRA S. TLR signaling[J]. Seminars in Immunology, 2007, 19(1): 24-32.
    [21] DEGUINE J, BARTON GM. MyD88: a central player in innate immune signaling[J]. F1000Prime Reports, 2014, 6: 97.
    [22] CHIANG JJ, SPARRER KMJ, GENT MV, LÄSSIG C, HUANG T, OSTERRIEDER N, HOPFNER KP, GACK MU. Viral unmasking of cellular 5s rRNA pseudogene transcripts induces RIG-I-mediated immunity[J]. Nature Immunology, 2018, 19: 53-62.
    [23] THORESEN D, WANG WS, GALLS D, GUO R, XU L, PYLE AM. The molecular mechanism of RIG-I activation and signaling[J]. Immunological Reviews, 2021, 304(1): 154-168.
    [24] ZHANG XH, CHEN GY, YIN JQ, LI LH, HUANG K, DU Q, TONG DW, HUANG Y. Pseudorabies virus infection activates the NLRP3 and IFI16 inflammasomes to trigger pyroptosis[J]. Veterinary Microbiology, 2023, 284: 109826.
    [25] SUN W, LIU SS, HUANG XF, YUAN R, YU JS. Cytokine storms and pyroptosis are primarily responsible for the rapid death of mice infected with pseudorabies virus[J]. Royal Society Open Science, 2021, 8(8): 210296.
    [26] LAI IH, CHANG CD, SHIH WL. Apoptosis induction by pseudorabies virus via oxidative stress and subsequent DNA damage signaling[J]. Intervirology, 2019, 62(3/4): 116-123.
    [27] YEH CJ, LIN PY, LIAO MH, LIU HJ, LEE JW, CHIU SJ, HSU HY, SHIH WL. TNF-alpha mediates pseudorabies virus-induced apoptosis via the activation of p38 MAPK and JNK/SAPK signaling[J]. Virology, 2008, 381(1): 55-66.
    [28] LUSSIGNOL M, ESCLATINE A. Modulation of autophagy by herpesvirus proteins[M]//HAYAT MA. Autophagy: Cancer, Other pathologies, Inflammation, Immunity, Infection, and Aging. Amsterdam: Academic Press, 2015: 145-158.
    [29] SUN MX, HOU LL, TANG YD, LIU YG, WANG SJ, WANG JF, SHEN N, AN TQ, TIAN ZJ, CAI XH. Pseudorabies virus infection inhibits autophagy in permissive cells in vitro[J]. Scientific Reports, 2017, 7: 39964.
    [30] SUN YH, CHEN XL, ZHANG LL, LIU H, LIU S, YU HH, WANG XQ, QIN YK, LI PC. The antiviral property of Sargassum fusiforme polysaccharide for avian leukosis virus subgroup J in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2019, 138: 70-78.
    [31] LOPES N, RAY S, ESPADA SF, BOMFIM WA, RAY B, FACCIN-GALHARDI LC, LINHARES REC, NOZAWA C. Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus[J]. International Journal of Biological Macromolecules, 2017, 102: 605-612.
    [32] MING K, CHEN Y, SHI JT, YANG JJ, YAO FK, DU H, ZHANG W, BAI JY, LIU JG, WANG DY, HU YL, WU Y. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury[J]. International Journal of Biological Macromolecules, 2017, 102: 813-821.
    [33] MING K, CHEN Y, YAO FK, SHI JT, YANG JJ, DU HX, WANG XY, WANG YX, LIU JG. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide[J]. International Journal of Biological Macromolecules, 2017, 94(Pt A): 28-35.
    [34] XING YX, WANG LM, XU GL, GUO SH, ZHANG MH, CHENG GD, LIU YX, LIU JZ. Platycodon grandiflorus polysaccharides inhibit pseudorabies virus replication via downregulating virus-induced autophagy[J]. Research in Veterinary Science, 2021, 140: 18-25.
    [35] XING YX, CUI YK, XU GL, QI CX, ZHANG MH, CHENG GD, LIU YX, LIU JZ. Protective effect of Platycodon grandiflorus polysaccharide on apoptosis and mitochondrial damage induced by pseudorabies virus in PK-15 cells[J]. Cell Biochemistry and Biophysics, 2023, 81(3): 493-502.
    [36] HUAN CC, XU Y, ZHANG W, PAN HC, ZHOU ZY, YAO JT, GUO TT, NI B, GAO S. Hippophae rhamnoides polysaccharides dampen pseudorabies virus infection through downregulating adsorption, entry and oxidative stress[J]. International Journal of Biological Macromolecules, 2022, 207: 454-463.
    [37] CICERO AFG, VITALE G, SAVINO G, ARLETTI R. Panax notoginseng (Burk.) effects on fibrinogen and lipid plasma level in rats fed on a high-fat diet[J]. Phytotherapy Research, 2003, 17(2): 174-178.
    [38] HUAN CC, ZHOU ZY, YAO JT, NI B, GAO S. The antiviral effect of Panax notoginseng polysaccharides by inhibiting PRV adsorption and replication in vitro[J]. Molecules, 2022, 27(4): 1254.
    [39] MUTAILLIFU P, BOBAKULOV K, ABUDUWAILI A, HUOJIAAIHEMAITI H, NUERXIATI R, AISA HA, YILI A. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra[J]. International Journal of Biological Macromolecules, 2020, 144: 751-759.
    [40] AYEKA PA, BIAN YH, GITHAIGA PM, ZHAO Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 536.
    [41] WANG YG, WANG XJ, ZHANG K, ZHANG X, LI SW, LI YL, FAN WG, LENG FF, YANG MJ, CHEN JX. Extraction kinetics, thermodynamics, rheological properties and anti-BVDV activity of the hot water assisted extraction of Glycyrrhizapolysaccharide[J]. Food & Function, 2020, 11(5): 4067-4080.
    [42] WITTSCHIER N, FALLER G, HENSEL A. Aqueous extracts and polysaccharides from liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa[J]. Journal of Ethnopharmacology, 2009, 125(2): 218-223.
    [43] HUAN CC, XU Y, ZHANG W, NI B, GAO S. Glycyrrhizapolysaccharide inhibits pseudorabies virus infection by interfering with virus attachment and internalization[J]. Viruses, 2022, 14(8): 1772.
    [44] GAO GZ, HE CQ, WANG HQ, GUO JK, KE LJ, ZHOU JW, CHONG PH, RAO PF. Polysaccharide nanoparticles from Isatis indigotica Fort. Root Decoction: diversity, cytotoxicity, and antiviral activity[J]. Nanomaterials, 2021, 12(1): 30.
    [45] JIANG DK, ZHANG L, ZHU GH, ZHANG PF, WU XL, YAO XP, LUO Y, YANG ZX, REN MS, WANG XP, CHEN S, WANG Y. The antiviral effect of Isatis root polysaccharide against NADC30-like PRRSV by transcriptome and proteome analysis[J]. International Journal of Molecular Sciences, 2022, 23(7): 3688.
    [46] WANG XB, CHEN ZW, CHEN T, LI X, HUANG SC, WANG H, TONG C, LIU F. Isatis root polysaccharide promotes maturation and secretory function of monocyte-derived dendritic cells[J]. BMC Complementary Medicine and Therapies, 2020, 20(1): 301.
    [47] YAO XL, WU WW, QU K, XI W. Traditional Chinese biomedical preparation (Huaier Granule) for breast cancer: a PRISMA-compliant meta-analysis[J]. Bioscience Reports, 2020, 40(8): BSR20202509.
    [48] HUAN CC, YAO JT, XU WY, ZHANG W, ZHOU ZY, PAN HC, GAO S. Huaier polysaccharide interrupts PRV infection via reducing virus adsorption and entry[J]. Viruses, 2022, 14(4): 745.
    [49] LIU CW, LIN HW, YANG DJ, CHEN SY, TSENG JK, CHANG TJ, CHANG YY. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1[J]. Free Radical Biology & Medicine, 2016, 95: 180-189.
    [50] FU L, LI S, MEN XY, CAI XJ, WANG ZY, XU YK, REN ZY, SHAO Y, ZHU Y. Optimizing the extraction and enrichment of luteolin from Patrinia villosa and its anti-pseudorabies virus activity[J]. Molecules, 2023, 28(13): 5005.
    [51] LIN HW, LEE YJ, YANG DJ, HSIEH MC, CHEN CC, HSU WL, CHANG YY, LIU CW. Anti-inflammatory effects of Flos Lonicerae Japonicae water extract are regulated by the STAT/NF-κB pathway and HO-1 expression in virus-infected RAW264.7 cells[J]. International Journal of Medical Sciences, 2021, 18(11): 2285-2293.
    [52] 赵旭帆. 杨梅素通过调节cGAS/STING信号通路抗伪狂犬病毒感染的研究[D]. 雅安: 四川农业大学硕士学位论文, 2023. ZHAO XF. Myricetin inhibits pseudorabies virus infection by regulating the cGAS/STING signal pathway[D]. Ya'an: Master's Thesis of Sichuan Agricultural University, 2023(in Chinese)
    [53] HU HY, HU ZQ, ZHANG YY, WAN HP, YIN ZQ, LI LX, LIANG XX, ZHAO XH, YIN LZ, YE G, ZOU YF, TANG HQ, JIA RY, CHEN YQ, ZHOU H, SONG X. Myricetin inhibits pseudorabies virus infection through direct inactivation and activating host antiviral defense[J]. Frontiers in Microbiology, 2022, 13: 985108.
    [54] REN CZ, HU WY, LI JC, XIE YH, JIA m soil-derived Streptomyces jiujiangensis NBERC-24992[J]. Molecules, 2023, 28(2): 878.
    [106] XIONG KK, TAN L, YI SL, WU YX, HU Y, WANG AB, YANG LC. Low-concentration T-2 toxin attenuates pseudorabies virus replication in porcine kidney 15 cells[J]. Toxins, 2022, 14(2): 121.
    [107] LV C, LIU W, WANG B, DANG R, QIU L, REN J, Y靁獎蠠C,贠陙瑁NG阠奚, 呗孁艎G 员洮栠Iv聥干佭e轣葴鹩酮造轩豮捨桩噢孩ts瘠兄噎孁 p佯卬遹赭卥繲虡癳乥鄠单罌褴伲爠牯畦欠慰杳履齵譤孯癲腡腢呩聥腳氠卶幩潲us en剴牲葡兮季扥 into the nucleus and proliferation of the virus in vitro and vivo[J]. Antiviral Research, 2018, 159: 55-62.
    [108] ZHANG YN, FANG W, WANG KM, ZHANG ZG, WU ZY, SHI LQ, LIU F, WAN ZY, LIU ML. Napyradiomycin A4 and its relate compounds, a new anti-PRV agent and their antibacterial activities, from Streptomyces kebangsaanensis WS-68302[J]. Molecules, 2023, 28(2): 640.
    [109] WANG XL, HAO GJ, ZHOU M, CHEN M, LING HL, SHANG YL. Secondary metabolites of Bacillus subtilis L2 show antiviral activity against pseudorabies virus[J]. Frontiers in Microbiology, 2023, 14: 1277782.
    [110] YANG MF, YAN W, LI Y, LI SQ, CHEN HY, YIN QQ, DANG XW, ZHANG HY. The probiotic attributes and anti-pseudorabies virus evaluation of Lactobacillus isolates[J]. Frontiers in Veterinary Science, 2022, 9: 902052.
    [111] CAO X, SHI YT, WU SH, WU XD, WANG KW, SUN HX, HE S, DICKSCHAT JS, WU B. Polycyclic meroterpenoids, talaromyolides E–K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus[J]. Tetrahedron, 2020, 76(30): 131349.
    [112] SÁNCHEZ-LEÓN E, BELLO-MORALES R, LÓPEZ-GUERRERO JA, POVEDA A, JIMÉNEZ-BARBERO J, GIRONÈS N, ABRUSCI C. Isolation and characterization of an exopolymer produced by Bacillus licheniformis: in vitro antiviral activity against enveloped viruses[J]. Carbohydrate Polymers, 2020, 248: 116737.
    [100] ZHANG Y, ZHANG GY, LING JY. Medicinal fungi with antiviral effect[J]. Molecules, 2022, 27(14): 4457.
    [101] SARKAR S, KOGA J, WHITLEY RJ, CHATTERJEE S. Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1[J]. Antiviral Research, 1993, 20(4): 293-303.
    [102] EO SK, KIM YS, LEE CK, HAN SS. Possible mode of antiviral activity of acidic pr孯奴浥in爠腢籯汵卮兤丠襰卯佬批剳佡奣扣佨牡牲畩此浥怠卩佳畯敬彡ted f陲孯m 嘼嵩儾乇奡孮硯塤孥佲譭敡 lucidum on herpes simplex viruses[J]. Journal of Ethnopharmacology, 2000, 72(3): 475-481.
    [103] LI RF, ZHOU XB, ZHOU HX, YANG ZF, JIANG HM, WU X, LI WJ, QIU JJ, MI JN, CHEN M, ZHONG NS, ZHU GY, JIANG ZH. Novel fatty acid in Cordyceps suppresses influenza a (H1N1) virus-induced proinflammatory response through regulating innate signaling pathways[J]. ACS Omega, 2021, 6(2): 1505-1515.
    [104] QIAN G, LIU DD, HU JF, GAN F, HOU LL, CHEN XX, HUANG KH. Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication[J]. Cell Death & Disease, 2017, 8(6): e2909.
    [105] LIU ML, REN MY, ZHANG YN, WAN ZY, WANG YY, WU ZY, WANG KM, FANG W, YANG XL. Antiviral activity of benzoheterocyclic compounds from soil-derived Streptomyces jiujiangensis NBERC-24992[J]. Molecules, 2023, 28(2): 878.
    [106] XIONG KK, TAN L, YI SL, WU YX, HU Y, WANG AB, YANG LC. Low-concentration T-2 toxin attenuates pseudorabies virus replication in porcine kidney 15 cel?s[J]. Toxins, 2022, 14(2): 121.
    [107] LV C, LIU W, WANG B, DANG R, QIU L, REN J, YAN C, YANG Z, WANG X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo[J]. Antiviral Research, 2018, 159: 55-62.
    [108] ZHANG YN, FANG W, WANG KM, ZHANG ZG, WU ZY, SHI LQ, LIU F, WAN ZY, LIU ML. Nap?radiomycin A4 and its relate compounds, a new anti-PRV agent and their antibacterial activities, from Streptomyces kebangsaanensis WS-68302[J]. Molecules, 2023, 28(2): 640.
    [109] WANG XL, HAO GJ, ZHOU M, CHEN M, LING HL, SHANG YL. Secondary metabolites of Bacillus subtilis L2 show antiviral activity against pseudorabies virus[J]. Frontiers in Microbiology, 2023, 14: 1277782.
    [110] YANG MF, YAN W, LI Y, LI SQ, CHEN HY, YIN QQ, DANG XW, ZHANG HY. The probiotic attributes and anti-pseudorabies virus evaluation of Lactobacillus isolates[J]. Frontiers in Veterinary Science, 2022, 9: 902052.
    [111] CAO X, SHI YT, WU SH, WU XD, WANG KW, SUN HX, HE S, DICKSCHAT JS, WU B. Polycyclic meroterpenoids, talaromyolides E–K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus[J]. Tetrahedron, 2020, 76(30): 131349.
    [112] SÁNCHEZ-LEÓN E, BELLO-MORALES R, LÓPEZ-GUERRERO JA, POVEDA A, JIMÉNEZ-BARBERO J, GIRONÈS N, ABRUSCI C. Isolation and characterization of an exopolymer produced by Bacillus licheniformis: in vitro antiviral activity against enveloped viruses[J]. Carbohydrate Polymers, 2020, 248: 116737.or in vitro and in vivo[J]. International Journal of Molecular Sciences, 2023, 24(19): 14479.
    [74] WANG ZY, CAI XJ, REN ZY, SHAO Y, XU YK, FU L, ZHU Y. Piceatannol as an antiviral inhibitor of PRV infection in vitro and in vivo[J]. Animals: an Open Access Journal from MDPI, 2023, 13(14): 2376.
    [75] BO ZY, ZHU JJ, GUO MJ, ZHANG CC, CAO YZ, ZHANG XR, WU YT. Gallocatechin gallate inhibits the replication of pseudorabies virus via suppressing the entry and release stages in its replication cycle[J]. Veterinary Sciences, 2023, 10(3): 189.
    [76] YE SY, SU F, LI JX, YU B, XU LH, XIONG T, SHAO K, YUAN XF. Enhanced in vivo antiviral activity against pseudorabies virus through transforming gallic acid into graphene quantum dots with stimulation of interferon-related immune responses[J]. Journal of Materials Chemistry B, 2023, 12(1): 122-130.
    [77] CAI XJ, SHAO Y, WANG ZY, XU YK, REN ZY, FU L, ZHU Y. Antiviral activity of dandelion aqueous extract against pseudorabies virus both in vitro and in vivo[J]. Frontiers in Veterinary Science, 2023, 9: 1090398.
    [78] KOBAYASHI J, WEN RD, NISHIKAWA T, NUNOMURA Y, SUZUKI T, SEJIMA Y, GOKAN T, FURUKAWA M, YOKOTA T, OSAWA N, SATO Y, NIBU Y, MIZUTANI T, OBA M. Natto extract inhibits infection caused by the Aujeszky's disease virus in mice[J]. Microbiology and Immunology, 2023, 67(12): 514-519.
    [79] CUSHNIE TP, CUSHNIE B, LAMB AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities[J]. International Journal of Antimicrobial Agents, 2014, 44(5): 377-386.
    [80] YAN YH, LI YZ, ZHANG ZW, WANG XH, NIU YZ, ZHANG SH, XU WL, REN CG. Advances of peptides for antibacterial applications[J]. Colloids and Surfaces B: Biointerfaces, 2021, 202: 111682.
    [81] PESTKA S, KRAUSE CD, WALTER MR. Interferons, interferon-like cytokines, and their receptors[J]. Immunological Reviews, 2004, 202: 8-32.
    [82] WANG PT, XIA L, LIANG XL, HAN FF, REN HJ, ZHANG YX, WEI ZY. Expression of porcine interferon-α and its bioactivity analysis in vitro and in vivo[J]. Bioprocess and Biosystems Engineering, 2021, 44(3): 473-482.
    [83] SONG BW, WEI WK, LIU XY, HUANG YY, ZHU SQ, YI L, EERDUNFU, DING HX, ZHAO MQ, CHEN JD. Recombinant porcine interferon-α decreases pseudorabies virus infection[J]. Vaccines, 2023, 11(10): 1587.
    [84] ZHAO K, LI XL, LEI BS, HAN Y, AN TQ, ZHANG WC, ZHANG HW, LI BS, YUAN WZ. Recombinant porcine interferon-α and interleukin-2 fusion protein (rPoIFNα+IL-2) shows potent anti-pseudorabies virus activity in vitro and in vivo[J]. Veterinary Microbiology, 2023, 279: 109678.
    [85] JIANG DD, JIANG CL, SUI C, WU XJ, HU Y, LEE C, CONG XY, LI JT, DU YJ, QI J. Swine NONO is an essential factor to inhibit pseudorabies virus infection[J]. Veterinary Microbiology, 2022, 275: 109582.
    [86] ZHAO X, CHENG G, JIAO Y, YAN WY, LIU MQ, ZHENG ZX. Cloning and characterization of porcine interferon-|?-related genes identified by genomic database screening[J]. Journal of Interferon & Cytokine Research, 2012, 32(8): 378-385.
    [87] ZHANG T, LIU YC, CHEN YM, WANG JC, FENG H, WEI Q, ZHAO SS, YANG SZ, MA HF, LIU DM, ZHANG GP. Antiviral activity of porcine interferon delta 8 against pesudorabies virus in vitro[J]. International Journal of Biological Macromolecules, 2021, 177: 10-18.
    [88] HALLER O, STAEHELI P, SCHWEMMLE M, KOCHS G. Mx GTPases: dynamin-like antiviral machines of innate immunity[J]. Trends in Microbiology, 2015, 23(3): 154-163.
    [89] CHEN J, HU JH, SUN RC, LI XH, ZHOU J, ZHOU B. Porcine Mx proteins inhibit pseudorabies virus replication through interfering with early gene synthesis[J]. Veterinary Microbiology, 2023, 280: 109706.
    [90] ZHAO XS, LI JR, WINKLER CA, AN P, GUO JT. IFITM genes, variants, and their roles in the control and pathogenesis of viral infections[J]. Frontiers in Microbiology, 2019, 9: 3228.
    [91] WANG J, WANG CF, MING SL, LI GL, ZENG L, WANG MD, SU BQ, WANG Q, YANG GY, CHU BB. Porcine IFITM1 is a host restriction factor that inhibits pseudorabies virus infection[J]. International Journal of Biological Macromolecules, 2020, 151: 1181-1193.
    [92] LIU HM, LI SS, YANG X, WANG XW, LI YT, WANG CQ, CHEN L, CHANG HT. Porcine ISG15 modulates the antiviral response during pseudorabies virus replication[J]. Gene, 2018, 679: 212-218.
    [93] YE C, WAN C, CHEN J, LI G, LI YX, WANG Y, TAO Q, PENG LC, FANG RD. Cathelicidin CATH-B1 inhibits pseudorabies virus infection via direct interaction and TLR4/JNK/IRF3-mediated interferon activation[J]. Journal of Virology, 2023, 97(7): e0070623.
    [94] HU H, GUO N, CHEN SH, GUO XZ, LIU XL, YE SY, CHAI QQ, WANG Y, LIU BL, HE QG. Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo[J]. Virology Journal, 2019, 16(1): 95.
    [95] HUANG J, QI YH, WANG AT, HUANG C, LIU X, YANG X, LI L, ZHOU R. Porcine β-defensin 2 inhibits proliferation of pseudorabies virus in vitro and in transgenic mice[J]. Virology Journal, 2020, 17(1): 18.
    [96] MA YJ, TIAN SM, WAN QH, KONG YY, LIU C, TIAN K, NING HY, XU XD, QI BM, YANG GH. Peptidomic analysis on mouse lung tissue reveals AGDP as a potential bioactive peptide against pseudorabies virus infection[J]. International Journal of Molecular Sciences, 2022, 23(6): 3306.
    [97] MARCOCCI ME, AMATORE D, VILLA S, CASCIARO B, AIMOLA P, FRANCI G, GRIECO P, GALDIERO M, PALAMARA AT, MANGONI ML, NENCIONI L. The amphibian antimicrobial peptide Temporin B inhibits in vitro herpes simplex virus 1 infection[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(5): e02367-17.
    [98] MATSUMURA T, SUGIYAMA N, MURAYAMA A, YAMADA N, SHIINA M, ASABE S, WAKITA T, IMAWARI M, KATO T. Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus[J]. Hepatology Research, 2016, 46(9): 924-932.
    [99] AHMED A, SIMAN-TOV G, HALL G, BHALLA N, NARAYANAN A. Human antimicrobial peptides as therapeutics for viral infections[J]. Viruses, 2019, 11(8): 704.
    [100] ZHANG Y, ZHANG GY, LING JY. Medicinal fungi with antiviral effect[J]. Molecules, 2022, 27(14): 4457.
    [101] SARKAR S, KOGA J, WHITLEY RJ, CHATTERJEE S. Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1[J]. Antiviral Research, 1993, 20(4): 293-303.
    [102] EO SK, KIM YS, LEE CK, HAN SS. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses[J]. Journal of Ethnopharmacology, 2000, 72(3): 475-481.
    [103] LI RF, ZHOU XB, ZHOU HX, YANG ZF, JIANG HM, WU X, LI WJ, QIU JJ, MI JN, CHEN M, ZHONG NS, ZHU GY, JIANG ZH. Novel fatty acid in Cordyceps suppresses influenza a (H1N1) virus-induced proinflammatory response through regulating innate signaling pathways[J]. ACS Omega, 2021, 6(2): 1505-1515.
    [104] QIAN G, LIU DD, HU JF, GAN F, HOU LL, CHEN XX, HUANG KH. Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication[J]. Cell Death & Disease, 2017, 8(6): e2909.
    [105] LIU ML, REN MY, ZHANG YN, WAN ZY, WANG YY, WU ZY, WANG KM, FANG W, YANG XL. Antiviral activity of benzoheterocyclic compounds fro
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DAI Yu, LIU Yiyu, YE Chao. Research progress on natural bioactive molecules against pseudorabies virus infection. [J]. Acta Microbiologica Sinica, 2024, 64(10): 3591-3609

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 29,2024
  • Revised:June 28,2024
  • Online: September 30,2024
  • Published: October 04,2024
Article QR Code