摘要
广西北热带喀斯特季节性雨林是我国特有的森林生态系统,然而其土壤微生物多样性及其维持机制尚不清楚。
目的
探究北热带喀斯特季节性雨林土壤细菌多样性分布特征及影响因子,为该地区土壤微生物多样性及其维持机制的解析提供参考依据。
方法
以弄岗北热带喀斯特季节性雨林15 h
结果
弄岗样地3种生境(洼地、中坡、山顶)的土壤共包含细菌操作分类单元(operational taxonomic unit, OTU) 5 841个,隶属于35门104纲242目373科677属1 501种,主要优势细菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和酸杆菌门(Acidobacteriota)等。洼地与中坡生境的优势细菌门均为变形菌门,而山顶生境则为放线菌门。在生境水平上,土壤细菌总OTU数与特异OTU数呈洼地>中坡>山顶的规律;但在群丛水平上,尽管山顶群丛(HH)的OTU总数显著少于其他群丛,其特异OTU数量却是最多的。土壤细菌α多样性 (Chao1、Sobs、Shannon、Simpson)指数在洼地与中坡生境间差异不显著,但山顶显著低于洼地与中坡生境,群丛HH也显著低于其他群丛。β多样性主坐标分析(principal co-ordinates analysis, PCoA)表明,土壤细菌群落结构在不同生境及群丛中存在明显差异。线性判别分析(linear discriminant analysis effect size, LEfSe)表明,洼地与山顶生境的标志类群较多,而中坡的差异指示种最少。相关性分析(Spearman correlation与Mantel test)及冗余分析(redundancy analysis, RDA)表明,平均海拔(average elevation, AvELE)是影响不同生境土壤细菌分布的主要因子,土壤有机碳(soil organic carbon, SOC)、碱解氮(alkali-hydrolyzable nitrogen, AN)及速效磷(available phosphorus, AP)的影响次之。基于Tax4Fun的功能预测显示,土壤细菌群落功能在不同生境及群丛间存在显著差异,其中山顶最为特殊。
结论
本研究揭示了弄岗样地土壤细菌的群落组成及其多样性分布格局,明确了海拔是影响其分布的首要因子。研究结果为解析广西北热带喀斯特季节性雨林土壤细菌多样性的维持机制提供了基础和依据。
喀斯特是由碳酸盐岩溶蚀而形成的一种特殊地貌。由于成土过程缓慢,喀斯特地区土壤具有土层浅薄且不连续、岩石裸露多以及养分含量低等特征,因此喀斯特地区也是世界上主要的生态脆弱地区之
土壤细菌是土壤微生物的重要组成部分,其种类多、数量大,在促进养分矿化、循环以及维持土壤功能等方面发挥着重要作用,其群落组成与多样性也是评价生态系统健康稳定的重要指
广西弄岗国家级自然保护区是世界上保存较为完整的北热带喀斯特季节性雨林,具有典型的喀斯特地质地貌,其生境也呈现出高度异质性,是研究热带喀斯特地区土壤细菌群落结构与多样性的理想场
1 材料与方法
1.1 研究区概况
弄岗国家级自然保护区(106°42′-107°04′E,22°13′-22°33′N)位于广西壮族自治区龙州县以东、宁明县以北,由弄岗、陇呼、陇瑞3个片区组成,总面积10 080 h

图1 弄岗样地的地形图。A:三维地形;B:群丛分布。
Figure 1 Topographic map of Nonggang sample plot. A: Three-dimensional topographical map; B: Association distribution.
1.2 土壤样品采集与处理
本研究所用土壤样品采集于2023年7月,采集方案为每个群丛内选取6-8个样方(20 m×20 m)进行土样采集,各生境、群丛及其取样样方数量如
典型生境 Typical habitats | 群丛 Association | 群丛小生境 Association microhabitat | 取样样方数 Number of quadrats sampled |
---|---|---|---|
洼地Depression (29) | DA | 谷底Valley | 7 |
DB | 谷底边缘Valley edge | 6 | |
DC | 中下坡阳坡地带Sunny lower-middle slope | 8 | |
DD | 中下坡阴坡地带Shady lower-middle slope | 8 | |
中坡Slop (23) | SE | 中上坡半阴坡地带Semi-shady middle-upper slope | 8 |
SF | 半阳坡地带Semi-sunny slope | 7 | |
SG | 垭口Pass | 8 | |
山顶Hilltop (8) | HH | 山顶Top | 8 |
括号内数字表示典型生境内总取样样方数。
The number in brackets indicates the total number of quadrats sampled in typical habitats.
1.3 土壤理化性质测定
土壤含水量(soil water content, SWC)采用烘干称量法;土壤pH采用电极测定;有机碳(SOC)测定采用酚二磺酸比色法;碱解氮(AN)采用碱解扩散法;速效磷(AP)采用钼锑抗比色法;速效钾(AK)采用乙酸铵提取-原子吸收法测
1.4 土壤微生物DNA提取和高通量测序
土壤总DNA提取采用E.Z.N.A
1.5 数据分析
高通量测序下机数据使用Illumina官方bcl2fastq软件(v2.20.0.422)去除接头序列,使用Fastp软件(v0.19.6)对双端序列进行质控,使用Flash软件(v1.2.11)进行拼
2 结果与分析
2.1 弄岗样地不同生境下的土壤细菌群落组成及差异
本研究采集的60个土壤样品经高通量测序、OTU划分与过滤,共得到5 841个OTUs。物种注释和分类结果显示,弄岗样地土壤细菌共包含35门104纲242目373科677属1 501种。OTU组成韦恩图显示:洼地共有5 601个OTUs,中坡共有5 634个OTUs,山顶共有4 203个OTUs;其中洼地特有OTUs为152个,中坡特有OTUs为35个(

图2 弄岗样地土壤细菌群落组成与生境特有类群。A:不同生境OTU组成韦恩图;B:不同群丛OTU组成韦恩图;C:不同生境特有的细菌属及其占比(相对丰度<5%的类群计为others)。
Figure 2 Soil bacterial community composition and habitat-specific genera in Nonggang plot. A: Venn diagram of soil bacterial community composition at OTU level in different habitats; B: Venn diagram of soil bacterial community composition at OTU level in different associations; C: Endemic genera in different habitats (taxa with a relative abundance less than 5% are classified as others).
在注释得到的35个细菌门中,相对丰度>1%的优势细菌门有12个,依次为变形菌门(Proteobacteria,24.41%)、放线菌门(Actinobacteriota,18.72%)、酸杆菌门(Acidobacteriota,18.62%)、粘球菌门(Myxococcota,8.74%)、甲基单胞菌门(Methylomirabilota,4.67%)、绿弯菌门(Chloroflexi,4.54%)、厚壁菌门(Firmicutes,4.33%)、疣微菌门(Verrucomicrobiota,3.89%)、拟杆菌门(Bacteroidota,3.28%)、芽单胞菌门(Gemmatimonadota,1.89%)、硝化螺旋菌门(Nitrospirae,1.34%)以及浮霉菌门(Planctomycetota,1.33%) (

图3 弄岗样地(门水平)土壤细菌相对丰度。A:样方水平;B:不同生境;C:不同群丛。A_1-A_7:群丛DA;B_1-B_6:群丛DB;C_1-C_8:群丛DC;D_1-D_8:群丛DD;E_1-E_8:群丛SE;F_1-F_7:群丛SF;G_1-G_8:群丛SG;H_1-H_8:群丛HH。相对丰度<1%的物种计为others。
Figure 3 Relative abundance of soil bacteria (phylum) in Nonggang plot. A: Quadrat-level; B: Habitat-level; C: Association-level. A_1-A_7: Association DA; B_1-B_6: Association DB; C_1-C_8: Association DC; D_1-D_8: Association DD; E_1-E_8: Association SE; F_1-F_7: Association SF; G_1-G_8: Association SG; H_1-H_8: Association HH. Taxa with a relative abundance less than 1% are classified as others.
对样地土壤细菌从门至属水平进行LEfSe分析,结果如

图4 不同生境下土壤细菌类群的LEfSe分析。分析涵盖从门到属水平,差异指示类群的首字母代表分类学水平。
Figure 4 Linear discriminant analysis effect size (LEfSe) of soil bacteria in different habitats. Taxa from phylum- to genus-level were analyzed, and the initials of biomarker taxa stand for the taxonomical level.
2.2 弄岗样地不同生境下土壤细菌群落多样性
基于OTU水平,不同生境的土壤细菌群落多样性如
Habitat and association | Chao1 index | Sobs index | Shannon index | Simpson index | |
---|---|---|---|---|---|
生境 Habitat | 洼地Depression | 3 372±147A | 2 587±102A | 6.314 5±0.137 1A | 0.008 6±0.002 5A |
中坡Slop | 3 330±243A | 2 513±177A | 6.283 6±0.190 0A | 0.008 3±0.003 5A | |
山顶Hilltop | 2 739±175B | 2 091±122B | 6.032 8±0.067 2B | 0.008 4±0.001 0A | |
群丛 Association | DA | 3 270±194a | 2 510±134ab | 6.174 3±0.153 5ab | 0.011 6±0.002 8a |
DB | 3 402±59a | 2 576±40ab | 6.288 0±0.089 7a | 0.008 5±0.001 9ab | |
DC | 3 440±97a | 2 635±78a | 6.393 5±0.040 1a | 0.006 9±0.000 5b | |
DD | 3 372±162a | 2 616±95a | 6.378 1±0.125 0a | 0.007 6±0.001 4ab | |
SE | 3 186±326a | 2 403±205b | 6.201 3±0.265 0a | 0.009 8±0.005 1ab | |
SF | 3 416±157a | 2 549±130ab | 6.343 1±0.096 3ab | 0.006 4±0.000 9b | |
SG | 3 398±147a | 2 593±141ab | 6.313 7±0.145 0a | 0.008 5±0.002 3ab | |
HH | 2 739±175b | 2 091±122c | 6.032 8±0.067 2b | 0.008 4±0.001 0ab |
同一列数据不同大写字母表示生境间差异,不同小写字母表示群丛间差异(Kruskal-Wallis检验,P<0.05)。
Different capital letters in the same column indicate significant differences among habitats, while different lowercase letters indicate significant differences among associations (Kruskal-Wallis test, P<0.05).
在群丛水平上,Chao1指数在群丛HH最低,与群丛DA-SG有显著差异,而在群丛DA-SG间未见显著差异。群丛HH的Sobs指数最低,其次为群丛SE,群丛SE与DC、DD、HH间具有显著差异,且群丛HH与群丛DA-SG均有显著差异。群丛HH的Shannon指数低于其他群丛,与群丛DB、DC、DD、SE、SG有显著差异,但与群丛DA、SF未见显著差异。群丛DA的Simpson指数最高,与群丛DC、SF有显著差异,而其他群丛(DB、DD、SE、SG、HH)未见显著差异。山顶群丛HH除Simpson指数外,其他多样性指数均为最低值。总体而言,弄岗样地土壤细菌多样性表现为洼地与中坡间差异不显著,山顶低于洼地与中坡生境,群丛HH低于其他群丛。
主坐标分析(PCoA)与ANOSIM差异检验结果显示,弄岗样地土壤细菌群落构成在不同生境和群丛中存在显著差异(

图5 基于OTU水平的弄岗样地土壤细菌主坐标分析(PCoA)。A:不同生境;B:不同群丛。分析采用Bray-Curtis距离算法,组间差异采用ANOSIM检验,样本点颜色与椭圆代表分组(生境或群丛)。
Figure 5 Principal co-ordinates analysis (PCoA) of soil bacteria (OTU level) at Nonggang plot. A: Different habitats; B: Different associations. The analysis is based on the Bray-Curtis distances, and the difference among groups was analyzed by analysis of similarities (ANOSIM). The colors and ellipses of sample points represent grouping (habitat or community).
2.3 弄岗样地不同生境的土壤理化性质差异
弄岗样地海拔范围为180-370 m,所有群丛的平均海拔(average elevation, AvELE)如
Association | AvELE (m) | pH | SWC (%) | AK (mg/kg) | AP (mg/kg) | SOC (g/kg) | AN (mg/kg) |
---|---|---|---|---|---|---|---|
DA | 188.75±2.86 | 6.90±0.09b | 55.57±1.63a | 369.71±60.33a | 87.25±8.99a | 68.62±4.87b | 274.07±19.75c |
DB | 200.68±6.96 | 7.06±0.09ab | 48.67±9.11ab | 214.83±23.59ab | 44.57±11.96ab | 84.37±5.49ab | 317.22±21.55abc |
DC | 231.14±16.75 | 7.09±0.10ab | 39.88±1.58ab | 186.38±11.27abc | 4.90±0.39abc | 92.34±5.80ab | 319.43±15.82abc |
DD | 214.20±12.31 | 6.86±0.10b | 41.75±4.93ab | 114.00±7.09abcd | 5.54±1.36abcc | 70.77±4.05b | 283.04±13.66bc |
SE | 282.79±23.53 | 6.82±0.14b | 33.00±1.20bc | 87.00±7.16d | 1.86±0.44c | 85.11±5.48ab | 293.76±12.93bc |
SF | 274.54±7.63 | 7.32±0.18a | 34.29±1.73bc | 102.14±9.72bcd | 2.04±0.23b | 93.92±5.49ab | 329.50±13.41ab |
SG | 297.24±12.51 | 6.93±0.06b | 38.00±1.40abc | 99.75±3.73bcd | 1.60±0.12c | 74.54±3.86b | 275.52±12.97c |
HH | 342.47±12.61 | 6.90±0.14b | 30.50±1.05c | 87.38±5.56d | 1.52±0.16c | 117.88±9.47a | 356.52±18.83a |
同一列数据中不同小写字母表示差异显著(Kruskal-Wallis检验,P<0.05);AvELE:平均海拔;pH:土壤酸碱度;SWC:土壤含水量;AK:速效钾;AP:速效磷;SOC:有机碳;AN:碱解氮。
Different lowercase letters in the same column indicate significant differences based on Kruskal-Wallis test (P<0.05). AvELE: Average elevation; pH: Soil pH; SWC: Soil water content; AK: Available potassium; AP: Available phosphorus; SOC: Soil organic carbon; AN: Alkali hydrolyzable nitrogen.
2.4 环境因子对弄岗样地细菌群落的影响
基于OTU水平的冗余分析(RDA)结果显示,海拔、pH、含水量、速效钾、速效磷、有机碳和碱解氮对土壤细菌群落结构有显著影响。RDA第一轴和第二轴分别解释了28.73%和11.54%的变异量 (

图6 基于OTU水平细菌群落与土壤环境因子的冗余分析(RDA)。ELE:海拔;pH:土壤酸碱度;SWC:土壤含水量;AK:速效钾;AP:速效磷;SOC:有机碳;AN:碱解氮。
Figure 6 Redundancy analysis (RDA) of bacterial communities (OTU-level) and soil environmental factors. ELE: Elevation; pH: Soil pH; SWC: Soil water content; AK: Available potassium; AP: Available phosphorus; SOC: Soil organic carbon; AN: Alkali hydrolyzable nitrogen.
与RDA结果类似,土壤细菌群落构成与环境因子的曼特尔检验结果也表明:海拔是与弄岗样地土壤细菌群落相关性最强的环境因子(r=0.503,P=0.001,
Environmental factors | ELE | pH | SWC | AK | AP | SOC | AN |
---|---|---|---|---|---|---|---|
Correlation coefficient (r) | 0.503 | 0.063 | 0.143 | 0.072 | 0.149 | 0.356 | 0.157 |
Significance (P) | 0.001 | 0.344 | 0.075 | 0.272 | 0.011 | 0.001 | 0.018 |
ELE:海拔;pH:土壤酸碱度;SWC:土壤含水量;AK:速效钾;AP:速效磷;SOC:有机碳;AN:碱解氮。
ELE: Elevation; pH: Soil pH; SWC: Soil water content; AK: Available potassium; AP: Available phosphorus; SOC: Soil organic carbon; AN: Alkali hydrolyzable nitrogen.
此外,土壤细菌门类与环境因子的Spearman相关性分析结果也表明,海拔、含水量、速效钾、速效磷、有机碳和碱解氮对土壤细菌组成具有显著影响(

图7 土壤环境因子与细菌群落构成(门水平) Spearman相关性。ELE:海拔;pH:土壤酸碱度;SWC:土壤含水量;AK:速效钾;AP:速效磷;SOC:有机碳;AN:碱解氮。
Figure 7 Spearman correlations of soil environmental factors and bacterial phyla. ELE: Elevation; pH: Soil pH; SWC: Soil water content; AK: Available potassium; AP: Available phosphorus; SOC: Soil organic carbon; AN: Alkali hydrolyzable nitrogen. ∗: P<0.05; ∗∗: P<0.01; ∗∗∗: P<0.001.
2.5 弄岗样地不同生境下土壤细菌群落功能预测及差异
Tax4Fun功能预测共鉴定出264个KEGG三级通路(level 3),隶属于6个一级通路(level 1)和40个二级通路(level 2)。在注释的6个一级通路中,占比最高的是代谢途径(metabolism),在8个群丛中分别为60.64%、60.64%、60.55%、60.59%、60.63%、60.52%、60.57%、60.63% (

图8 弄岗样地不同群丛土壤细菌群落功能预测及差异。A:KEGG一级通路(level 1);B:KEGG二级通路(level 2);C:KEGG三级通路(level 3);D:三级通路功能差异[同一行数据不同小写字母表示显著差异(Kruskal-Wallis检验,P<0.05)]。
Figure 8 KEGG pathway prediction and differences among different associations of Nonggang plot. A: KEGG pathways at level 1; B: KEGG pathways at level 2; C: KEGG pathways at level 3; D: differences in KEGG level 3 pathways (Different lowercase letters in the same row indicate significant differences (Kruskal-Wallis test, P<0.05)).
对KEGG三级通路占比前10的通路进行差异分析,结果显示群丛HH的氮代谢(nitrogen metabolism)和细胞周期(cell cycle-caulobacter)功能均显著高于其他群丛;此外,群丛HH在转运蛋白(ABC transporters)、双组分系统(two-component system)、嘌呤代谢(purine metabolism)、氨基酰-tRNA生物合成(aminoacyl-tRNA biosynthesis)和卟啉及叶绿素代谢(porphyrin and chlorophyll metabolism)方面与其他群丛也存在显著性差异(
3 讨论
3.1 不同生境类型土壤细菌群落结构特征
土壤细菌优势物种在土壤的形成与发展中发挥着重要作
弄岗样地土壤细菌多样性指数在不同生境中存在差异,山顶多样性指数明显低于洼地与中坡(
3.2 不同生境土壤环境因子对细菌群落的影响
海拔是影响生物群落分布的重要因子,生物群落结构和分布格局通常受到因海拔变化而导致的生境水、热条件变化的影
除海拔外,土壤理化因子也是引起土壤微生物群落变化的重要因
综上所述,本研究发现海拔是影响弄岗样地土壤细菌群落组成与多样性的关键因子,土壤有机碳、碱解氮、速效磷以及含水量等对弄岗样地土壤细菌群落组成与多样性也有重要影响(
3.3 不同生境细菌群落的功能特征
土壤微生物群落的组成和结构是决定其功能的关键因
尽管基于Tax4Fun的功能预测为我们了解弄岗样地土壤细菌群落的功能多样性及其分布格局提供了线索,但本研究基于16S rRNA基因序列的方法本身还存在一定的局限性,未来重要功能基因分析以及覆盖全基因组的宏基因组学(metagenomics)研究将会为微生物群落功能多样性提供更准确、全面的解析。
4 结论
本研究以弄岗15 h
作者贡献声明
杨美雪:数据分析、文章撰写及修改;罗婷:实验设计、样品采集及处理;钟艺倩:样品采集及处理;吴淼锐:样品采集及处理;陶旺兰:样品采集及处理;陆芳:样品采集及处理;王斌:样品采集及处理;向悟生:样品采集及处理;唐年武:实验设计、研究指导及文章审阅;李先琨:研究指导及文章审阅。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
龙健, 江新荣, 邓启琼, 刘方. 贵州喀斯特地区土壤石漠化的本质特征研究[J]. 土壤学报, 2005(3): 419-427. [百度学术]
LONG J, JIANG XR, DENG QQ, LIU F. Characteristics of soil rocky desertification in the Karst region of Guizhou province[J]. Acta Pedologica Sinica, 2005(3): 419-427 (in Chinese). [百度学术]
魏源, 王世杰, 刘秀明, 黄天志. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性[J]. 植物生态学报, 2011, 35(10): 1083-1090. [百度学术]
WEI Y, WANG SJ, LIU XM, HUANG TZ. Genetic diversity of arbuscular mycorrhizal fungi in Karst microhabitats of Guizhou Province, China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1083-1090 (in Chinese). [百度学术]
熊康宁, 池永宽.中国南方喀斯特生态系统面临的问题及对策[J]. 生态经济, 2015, 31(1): 23-30. [百度学术]
XIONG KN, CHI YK. The problems in southern China Karst ecosystem in southern of China and its countermeasures[J]. Ecological Economy, 2015, 31(1): 23-30 (in Chinese). [百度学术]
赵元, 张伟, 胡培雷, 肖峻, 王克林. 桂西北喀斯特峰丛洼地不同植被恢复方式下土壤有机碳组分变化特征[J]. 生态学报, 2021, 41(21): 8535-8544. [百度学术]
ZHAO Y, ZHANG W, HU PL, XIAO J, WANG KL. Responses of soil organic carbon fractions to different vegetation restoration in a typical Karst depression[J]. Acta Ecologica Sinica, 2021, 41(21): 8535-8544 (in Chinese). [百度学术]
王克林, 岳跃民, 陈洪松, 吴协保, 肖峻, 祁向坤, 张伟, 杜虎. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20): 7432-7440. [百度学术]
WANG KL, YUE YM, CHEN HS, WU XB, XIAO J, QI XK, ZHANG W, DU H. The comprehensive treatment of Karst rocky desertification and its regional restoration effects[J]. Acta Ecologica Sinica, 2019, 39(20): 7432-7440 (in Chinese). [百度学术]
张国, 郑春燕, 李钰飞, 韩雪梅, 杨广斌, 逯非, 王效科. 喀斯特地区石漠化生态修复对土壤生物多样性的影响[J]. 生态学报, 2023, 43(1): 432-440. [百度学术]
ZHANG G, ZHENG CY, LI YF, HAN XM, YANG GB, LU F, WANG XK. Impact of ecological restoration of rocky desertification on soil biodiversity in Karst area: a review[J]. Acta Ecologica Sinica, 2023, 43(1): 432-440 (in Chinese). [百度学术]
黄宗胜, 符裕红, 喻理飞. 喀斯特森林自然恢复中土壤微生物生物量碳与水溶性有机碳特征[J]. 应用生态学报, 2012, 23(10): 2715-2720. [百度学术]
HUANG ZS, FU YH, YU LF. Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2715-2720 (in Chinese). [百度学术]
黄娟, 邓羽松, 韦慧, 林立文, 黄海梅, 付智勇. 喀斯特峰丛洼地不同植被类型土壤微生物量碳氮磷和养分特征[J]. 土壤通报, 2022, 53(3): 605-612. [百度学术]
HUANG J, DENG YS, WEI H, LIN LW, HUANG HM, FU ZY. Characteristics of soil microbial biomass carbon, nitrogen and phosphorus, and nutrients in different vegetation types in Karst peak-cluster depression[J]. Chinese Journal of Soil Science, 2022, 53(3): 605-612 (in Chinese). [百度学术]
SENGUPTA A, DICK WA. Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing[J]. Microbial Ecology, 2015, 70(3): 853-859. [百度学术]
戴雅婷, 闫志坚, 解继红, 吴洪新, 徐林波, 侯向阳, 高丽, 崔艳伟. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J]. 土壤学报, 2017, 54(3): 735-748. [百度学术]
DAI YT, YAN ZJ, XIE JH, WU HX, XU LB, HOU XY, GAO L, CUI YW. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 2017, 54(3): 735-748 (in Chinese). [百度学术]
刘兴, 王世杰, 刘秀明, 黄天志, 李勇. 贵州喀斯特地区土壤细菌群落结构特征及变化[J]. 地球与环境, 2015, 43(5): 490-497. [百度学术]
LIU X, WANG SJ, LIU XM, HUANG TZ, LI Y. Compositional characteristics and variations of soil microbial community in Karst area of Puding County, Guizhou Province, China[J]. Earth and Environment, 2015, 43(5): 490-497 (in Chinese). [百度学术]
吴求生, 龙健, 李娟, 廖洪凯, 刘灵飞, 吴劲楠, 肖雄. 茂兰喀斯特森林小生境类型对土壤微生物群落组成的影响[J]. 生态学报, 2019, 39(3): 1009-1018. [百度学术]
WU QS, LONG J, LI J, LIAO HK, LIU LF, WU JN, XIAO X. Effects of different microhabitat types on soil microbial community composition in the Maolan Karst Forest in southwest China[J]. Acta Ecologica Sinica, 2019, 39(3): 1009-1018 (in Chinese). [百度学术]
GUO ZM, ZHANG XY, DUNGAIT JAJ, GREEN SM, QUINE TA. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical Karst ecosystem[J]. Science of the Total Environment, 2021, 761. [百度学术]
HU PL, XIAO J, ZHANG W, XIAO LM, YANG R, XIAO D, ZHAO J, WANG KL. Response of soil microbial communities to natural and managed vegetation restoration in a subtropical Karst region[J]. CATENA, 2020, 195. [百度学术]
李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. [百度学术]
LI C, LÜ JH, LU M, YANG ZD, LIU P, REN YL, DU F. Responses of soil bacterial communities to vertical vegetarian zone changes in the subtropical forests, southeastern Yunnan[J]. Ecology and Environmental Sciences, 2022, 31(10): 1971-1983 (in Chinese). [百度学术]
XIAO D, HE XY, ZHANG W, HU PL, SUN MM, WANG KL. Comparison of bacterial and fungal diversity and network connectivity in Karst and non-Karst forests in southwest China[J]. Science of the Total Environment, 2022, 822: 153179. [百度学术]
李佳奇, 郭屹立, 李冬兴, 王斌, 向悟生, 黄甫昭, 陆芳, 文淑均, 李建星, 陆树华, 李先琨. 桂西南北热带喀斯特季节性雨林土壤钾、钙、镁空间分布特征及其影响因素[J]. 生物多样性, 2023, 31(2): 178-189. [百度学术]
LI JQ, GUO YL, LI DX, WANG B, XIANG WS, HUANG FZ, LU F, WEN SJ, LI JX, LU SH, LI XK. Spatial distribution characteristics of soil potassium, calcium, and magnesium and their influencing factors in a northern tropical Karst seasonal rainforest in southwestern Guangxi[J]. Biodiversity Science, 2023, 31(2): 178-189 (in Chinese). [百度学术]
郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨. 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析[J]. 生物多样性, 2015, 23(2): 183-191. [百度学术]
GUO YL, WANG B, XIANG WS, DING T, LU SH, HUANG YS, HUANG FZ, LI DX, LI XK. Spatial distribution of tree species in a tropical Karst seasonal rainforest in Nonggang, Guangxi, Southern China[J]. Biodiversity Science, 2015, 23(2): 183-191 (in Chinese). [百度学术]
黄甫昭, 丁涛, 李先琨, 郭屹立, 王斌, 向悟生, 文淑均, 李冬兴, 何运林. 弄岗喀斯特季节性雨林不同群丛物种多样性随海拔的变化[J]. 生态学报, 2016, 36(14): 4509-4517. [百度学术]
HUANG FZ, DING T, LI XK, GUO YL, WANG B, XIANG WS, WEN SJ, LI DX, HE YL. Species diversity for various associations along an altitudinal gradient in the Karst seasonal rainforest in Nonggang[J]. Acta Ecologica Sinica, 2016, 36(14): 4509-4517 (in Chinese). [百度学术]
郭屹立, 李冬兴, 王斌, 白坤栋, 向悟生, 李先琨. 北热带喀斯特季节性雨林土壤和6个常见树种凋落物的C、N、P化学计量学特征[J]. 生物多样性, 2017, 25(10): 1085-1094. [百度学术]
GUO YL, LI DX, WANG B, BAI KD, XIANG WS, LI XK. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical Karst seasonal rainforest in Nonggang, Guangxi, Southern China[J]. Biodiversity Science, 2017, 25(10): 1085-1094 (in Chinese). [百度学术]
王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均. 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布[J]. 生物多样性, 2014, 22(2): 141-156. [百度学术]
WANG B, HUANG YS, LI XK, XIANG WS, DING T, HUANG FZ, LU SH, HAN WH, WEN SJ. Species composition and spatial distribution of a 15 ha northern tropical Karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, Southern China[J]. Biodiversity Science, 2014, 22(2): 141-156 (in Chinese). [百度学术]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 30-107. [百度学术]
BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 30-107 (in Chinese). [百度学术]
XU N, TAN GC, WANG HY, GAI XP. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. [百度学术]
CHEN SF. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp[J]. iMeta, 2023, 2(2): e107. [百度学术]
TANJA M, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. [百度学术]
EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998. [百度学术]
WANG XL, YANG YB, NAN Q, GUO JW, TAN ZY, SHAO XM, TIAN CF. Barley farmland harbors a highly homogeneous soil bacterial community compared to wild ecosystems in the Qinghai-Xizang Plateau[J]. Frontiers in Microbiology, 2024. DOI: 10.3389/fmicb.2024.1418161. [百度学术]
QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLÖCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(Database issue): D590-D596. [百度学术]
SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75: 7537-7541. [百度学术]
FAN X, XING P. The vertical distribution of sediment archaeal community in the “black bloom” disturbing Zhushan Bay of Lake Taihu[J]. Archaea, 2016. https://doi.org/10.115572016/8232135. [百度学术]
KIM JH. Multicollinearity and misleading statistical results[J]. Korean Journal of Anesthesiology, 2019, 72(6): 558-569. [百度学术]
AßHAUER KP, WEMHEUER B, DANIEL R, MEINICKE P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17): 2882-2884. [百度学术]
刘丽, 徐明恺, 汪思龙, 张倩茹, 王楠, 潘华奇, 胡江春. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J]. 生态学报, 2013, 33(15): 4692-4706. [百度学术]
LIU L, XU MK, WANG SL, ZHANG QR, WANG N, PAN HQ, HU JC. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure[J]. Acta Ecologica Sinica, 2013, 33(15): 4692-4706 (in Chinese). [百度学术]
吴求生, 龙健, 廖洪凯, 刘灵飞, 李娟, 吴劲楠, 肖雄. 贵州茂兰喀斯特森林不同小生境下土壤细菌群落特征[J]. 应用生态学报, 2019, 30(1): 108-116. [百度学术]
WU QS, LONG J, LIAO HK, LIU LF, LI J, WU JN, XIAO X. Soil bacterial community characteristics under different microhabitat types on Maolan Karst forest, Guizhou, Southwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 108-116 (in Chinese). [百度学术]
田国杰, 王晗, 陈立红. 内蒙古赤峰地区主要树种根际固氮菌的分离和鉴定[J]. 内蒙古林业科技, 2016, 42(1): 21-26. [百度学术]
TIAN GJ, WANG H, CHEN LH. Isolation and determination of nitrogen-fixing bacteria in rhizosphere of main tree species in Chifeng, Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science and Technology, 2016, 42(1): 21-26 (in Chinese). [百度学术]
熊智, 张忠泽, 姜成林. 固氮放线菌Frankia与放线菌根植物共生进化的研究进展[J]. 应用与环境生物学报, 2003(2): 213-217. [百度学术]
XIONG Z, ZHANG ZZ, JIANG CL. A review on the evolution of frankia-actinorhizal plant symbiosis[J]. Chinese Journal of Applied & Environmental Biology, 2003(2): 213-217 (in Chinese). [百度学术]
吴晋元, 职晓阳, 李岩, 关统伟, 唐蜀昆, 徐丽华, 李文均. 云南江城和黑井盐矿沉积物未培养放线菌多样性比较[J]. 微生物学通报, 2008, 35(10): 1550-1555. [百度学术]
WU JY, ZHI XY, LI Y, GUAN TW, TANG SK, XU LH, LI WJ. Comparison of actinobacterial diversity in Jiangcheng and heijing saline mines in Yunnan by using culture-independent approach[J]. Microbiology China, 2008, 35(10): 1550-1555 (in Chinese). [百度学术]
向前胜, 张登山, 孙奎, 王宁. 高寒地区不同海拔梯度西北小檗生境土壤微生物群落结构及多样性分析[J]. 西北植物学报, 2021, 41(6): 1036-1050. [百度学术]
XIANG QS, ZHANG DS, SUN K, WANG N. Analysis of soil microbial community structure and diversity in berberis vernae habitat at different altitudes in alpine region[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1036-1050 (in Chinese). [百度学术]
黄甫昭, 王斌, 丁涛, 向悟生, 李先琨, 周爱萍. 弄岗北热带喀斯特季节性雨林群丛数量分类及与环境的关系[J]. 生物多样性, 2014, 22(2): 157-166. [百度学术]
HUANG FZ, WANG B, DING T, XIANG WS, LI XK, ZHOU AP. Numerical classification of associations in a northern tropical Karst seasonal rain forest and the relationships of these associations with environmental factors[J]. Biodiversity Science, 2014, 22(2): 157-166 (in Chinese). [百度学术]
龙健, 赵畅, 张明江, 吴劲楠, 吴求生, 黄博聪, 张菊梅. 不同坡向凋落物分解对土壤微生物群落的影响[J]. 生态学报, 2019, 39(8): 2696-2704. [百度学术]
LONG J, ZHAO C, ZHANG MJ, WU JN, WU QS, HUANG BC, ZHANG JM. Effect of itter decomposition on soil microbes on different slopes[J]. Acta Ecologica Sinica, 2019, 39(8): 2696-2704 (in Chinese). [百度学术]
安然, 马风云, 崔浩然, 秦光华, 黄雅丽, 田琪. 黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析[J]. 生态学报, 2019, 39(21): 7960-7967. [百度学术]
AN R, MA FY, CUI HR, QIN GH, HUANG YL, TIAN Q. Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and there pure forest in the Yellow River Delta[J]. Acta Ecologica Sinica, 2019, 39(21): 7960-7967 (in Chinese). [百度学术]
LUO LF, ZHANG JX, YE C, LI S, DUAN SS, WANG ZP, HUANG HC, LIU YX, DENG WP, MEI XY, HE XH, YANG M, ZHU SS. Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome[J]. Microbiology Spectrum, 2022, 10(6): e0241822. [百度学术]
厉桂香, 马克明. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 2018, 38(5): 1521-1529. [百度学术]
LI GX, MA KM. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 2018, 38(5): 1521-1529 (in Chinese). [百度学术]
CABRERA HERNANDEZ JA, RIBEIRO HM, BAYNE E, MACKENZIE MD, LANOIL BD. Impact of stockpile depth and storage time on soil microbial communities[J]. Applied Soil Ecology, 2024, 105275. [百度学术]
REN CJ, ZHANG W, ZHONG ZK, HAN XH, YANG GH, FENG YZ, REN GX. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics[J]. Science of the Total Environment, 2018, 610: 750-758. [百度学术]
张地, 张育新, 曲来叶, 张霜, 马克明. 海拔对辽东栎林地土壤微生物群落的影响[J]. 应用生态学报, 2012, 23(8): 2041-2048. [百度学术]
ZHANG D, ZHANG YX, QU LY, ZHANG S, MA KM. Effects of altitude on soil microbial community in Quercus liaotungensis forest[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2041-2048 (in Chinese). [百度学术]
林惠瑛, 周嘉聪, 曾泉鑫, 孙俊, 李锦隆, 刘苑苑, 谢欢, 吴玥, 张秋芳, 崔琚琰, 程栋梁, 陈岳民. 武夷山黄山松林土壤细菌群落特征沿海拔梯度的分布模式[J]. 生态学杂志, 2022, 41(8): 1482-1492. [百度学术]
LIN HY, ZHOU JC, ZENG QX, SUN J, LI JL, LIU YY, XIE H, WU Y, ZHANG QF, CUI JY, CHENG DL, CHEN YM. Distribution pattern of soil bacterial community characteristics in a Pinus taiwanensis forest along an eleva-tional gradient of Wuyi Mountains[J]. Chinese Journal of Ecology, 2022, 41(8): 1482-1492 (in Chinese). [百度学术]
杨菁, 周国英, 田媛媛, 刘倩丽, 刘成锋, 杨权, 周洁尘. 降香黄檀不同混交林土壤细菌多样性差异分析[J]. 生态学报, 2015, 35(24): 8117-8127. [百度学术]
YANG J, ZHOU GY, TIAN YY, LIU QL, LIU CF, YANG Q, ZHOU JC. Differential analysis of soil bacteria diversity in different mixed forests of Dalbergia odorifera[J]. Acta Ecologica Sinica, 2015, 35(24): 8117-8127 (in Chinese). [百度学术]
李伊凡, 王俊伟, 陈永豪, 何柄枚, 拉琼. 西藏岗巴拉山土壤细菌多样性海拔分布格局及其驱动因子[J]. 生态学报, 2024, 44(2): 712-722. [百度学术]
LI YF, WANG JW, CHEN YH, HE BM, LA Q. Elevation distribution pattern and driving factors of soil bacterial diversity on mount Gangbala, Xizang, China[J]. Acta Ecologica Sinica, 2024, 44(2): 712-722 (in Chinese). [百度学术]
马垒, 赵文慧, 郭志彬, 王道中, 赵炳梓. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响[J]. 生态学报, 2019, 39(11): 4158-4167. [百度学术]
MA L, ZHAO WH, GUO ZB, WANG DZ, ZHAO BZ. Effects of long-term application of phosphorus fertilizer on fungal community diversity, composition, and intraspecific interactions and variation with application rate in a lime concretion black soil[J]. Acta Ecologica Sinica, 2019, 39(11): 4158-4167 (in Chinese). [百度学术]
王丹, 赵亚光, 马蕊, 杨鹏, 张成, 周东姣, 孙福新, 张凤华. 微生物菌肥对盐碱地枸杞土壤改良及细菌群落的影响[J]. 农业生物技术学报, 2020, 28(8): 1499-1510. [百度学术]
WANG D, ZHAO YG, MA R, YANG P, ZHANG C, ZHOU DJ, SUN FX, ZHANG FH. Effects of microbial fertilizers on soil improvement and bacterial communities in saline-alkali soils of Lycium barbarum[J]. Journal of Agricultural Biotechnology, 2020, 28(8): 1499-1510 (in Chinese). [百度学术]
冯汉华, 吴斌, 伍国清, 谭文雄, 叶飞, 郑全胜. 喀斯特不同植被类型土壤细菌群落与功能特征[J]. 森林与环境学报, 2024, 44(2): 148-156. [百度学术]
FENG HH, WU B, WU GQ, TAN WX, YE F, ZHENG QS. Characteristics and functions of soil microbial communities under different vegetation types in Karst areas[J]. Journal of Forest and Environment, 2024, 44(2): 148-156 (in Chinese). [百度学术]
王莎莎, 蓝家程, 祁雪, 王俊贤, 龙启霞, 黄明芝, 刘磊, 岳坤前. 喀斯特峡谷石漠化区造林对土壤细菌群落结构的影响[J/OL]. 生态学杂志, 2024. http://kns.cnki.net/kcms/detail/21.1148.Q.20240510.1436.018.html. [百度学术]
WANG SS, LAN JC, QI X, WANG JX, LONG QX, HUANG MZ, LIU L, YUE KQ. Influence of afforestation on soil bacterial community structure in Karst canyon rocky desertification area[J]. Chinese Journal of Ecology, 2024. http://kns.cnki.net/kcms/detail/21.1148.Q.20240510.1436.018.html. [百度学术]
ISLAM T, JENSEN S, REIGSTAD LJ, LARSEN O, BIRKELAND NK. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1): 300-304. [百度学术]
刘开朗, 王加启, 卜登攀, 李旦, 于萍, 赵圣国. 环境微生物群落结构与功能多样性研究方法[J]. 生态学报, 2010, 30(4): 1074-1080. [百度学术]
LIU KL, WANG JQ, BU DP, LI D, YU P, ZHAO SG. Current progress in approaches to the study of structure and function diversities of environmental microbial communities[J]. Acta Ecologica Sinica, 2010, 30(4): 1074-1080 (in Chinese). [百度学术]
GAO CG, BEZEMER TM, VRIES FT, BODEGOM PM. Trade-offs in soil microbial functions and soil health in agroecosystems[J]. Trends in Ecology & Evolution, 2024 [百度学术]
HOBLEY E, WILSON B, WILKIE A, GRAY J, KOEN T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia[J]. Plant and Soil, 2015, 390(1): 111-127. [百度学术]