摘要
琥珀酸是一种重要的四碳二羧酸,广泛应用于食品、医药和化工等行业。与传统基于石化原料的化学合成方法相比,微生物发酵法生产琥珀酸是一种更具经济性和环境友好性的替代方案,具有较大的应用潜力。酵母具有良好的环境耐受性,因此酵母细胞工厂生产琥珀酸逐渐成为研究热点。本文以酵母生产琥珀酸为出发点,综述了构建酵母细胞工厂生产琥珀酸的相关代谢工程与调控策略,包括琥珀酸合成路径构建、辅因子供应优化、跨膜转运改造等,总结了利用廉价原料进行琥珀酸生物合成的最新研究进展,探讨了增强酵母菌株抗逆性的方法,最后展望了酵母在琥珀酸生物合成中的未来发展前景。
琥珀酸(succinic acid, SA),又称丁二酸,是一种重要的平台化合物,被美国能源部列为12种最重要的平台化合物之
目前,琥珀酸生物法合成宿主主要是细菌,包括产琥珀酸放线杆菌(Actinobacillus succinogenes
本综述围绕酵母产琥珀酸细胞工厂的构建与优化,总结了琥珀酸合成路径构建及代谢调控策略,介绍了拓展底物谱利用低成本碳源进行琥珀酸生产的研究成果,概述了提高酵母工程菌株抗逆性的策略,最后探讨了进一步提高酵母中琥珀酸合成效率的策略,并对酵母生物合成琥珀酸的未来前景进行了展望。
1 酵母产琥珀酸细胞工厂的合成路径构建与优化
琥珀酸作为一种重要的C4平台化合物,广泛应用于化工、食品及医药等领域,具有极高的工业价值。利用微生物细胞工厂进行琥珀酸的绿色生产,尤其是通过代谢工程改造的酵母菌株,逐渐成为替代传统石化工艺的重要手
1.1 琥珀酸生物合成路径构建
琥珀酸是三羧酸循环(tricarboxylic acid cycle, TCA)的重要中间产物,也是多种兼性厌氧菌和严格厌氧菌的末端代谢产物。目前琥珀酸的天然生物合成途径主要有3条(

图1 琥珀酸生物合成的不同代谢途径
Figure 1 Different metabolic pathways of microbial succinic acid production. GPD: Glycerol-3-phosphate dehydrogenase; PYK: Pyruvate kinase; PDH: Pyruvate dehydrogenase; ACO: Aconitase; IDH: Isocitrate dehydrogenase; KGDH: α-ketoglutarate dehydrogenase; SDH: Succinate dehydrogenase; SCS: Succinyl-CoA synthetase; FUM: Fumarate hydratase; MDH: Malate dehydrogenase; CS: Citrate synthase; ICL: Isocitrate lyase; MLS: Malate synthase; PYC: Pyruvate carboxylase; FRD: Fumarate reductase.
1.1.1 oTCA循环路径构建
oTCA循环作为细胞呼吸的重要部分,通过氧化乙酰辅酶A生成电子载体还原型烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NADH)和还原黄素腺嘌呤二核苷酸 (flavine adenine dinucleotide, FADH2)并进入电子传递链,驱动氧化磷酸化过程,最终产生腺嘌呤核苷三磷酸(adenosine triphosphate, ATP),提供细胞所需的能量,在细胞生长中起到不可替代的作
在S. cerevisiae中探索sdh敲除对琥珀酸生物合成的影响,当sdh1和sdh2或sdh1b同时被敲除时,S. cerevisiae完全失去SDH活性,且无法在甘油为唯一碳源的培养基上生长;与野生型菌株相比,sdh1和sdh1b双敲除株的琥珀酸产量提高了1.9倍,同时TCA循环的中断也导致下游产物苹果酸的积累量减
相似的策略同样也被应用于Y. lipolytica中,Y. lipolytica是一种严格好氧的酵母,当呼吸作用完全消失时无法生长,因此不能完全消除SDH的活性,使用诱导型启动子替换Y. lipolytica的sdh2启动子区域,能够使SDH活性降低40%-64%,在摇瓶发酵中,该sdh敲低菌株的琥珀酸产量从5.00 g/L提高到15.40 g/L,同时苹果酸和富马酸分别减少到1/2和1/
1.1.2 rTCA循环路径构建
rTCA路径天然存在于大部分厌氧细菌中,是细菌天然积累琥珀酸的主要途径,然而多数酵母由于富马酸酶的不可逆催化或胞质富马酸还原酶的缺失,不具备天然的rTCA路
为了在S. cerevisiae中构建rTCA路径,首先在一株丙酮酸脱羧酶(pyruvate decarboxylase, PDC)缺陷型S. cerevisiae中过表达丙酮酸羧化酶基因pyc、苹果酸脱氢酶基因mdh、异源延胡索酸酶基因fum和延胡索酸还原酶(fumarate reductase, FRD)基因frd,构建了一株工程菌株S. cerevisiae PMCFf,该菌株最终琥珀酸产量为12.97 g/
1.1.3 乙醛酸循环路径构建
乙醛酸循环途径主要存在于一些好氧细菌及真菌中,这些微生物通常具有能利用乙酸盐为唯一碳源生长的能
1.1.4 互补路径组合优化
在琥珀酸的3条常见生物合成途径中,oTCA循环和乙醛酸循环均为氧化途径,需要细胞在有氧条件下进行发酵,合成过程中不可避免地会出现碳流的损耗,并且通过氧化途径积累琥珀酸均需要抑制SDH活性以阻断三羧酸循环,该策略会导致菌株在利用葡萄糖等底物时出现生长缺
最近,Rendulić等尝试在S. cerevisiae中将琥珀酸的氧化和还原合成路径相结合,从一株通过rTCA路径合成琥珀酸的S. cerevisiae菌株出发,敲除线粒体丙酮酸载体MPC (由mpc3基因编码),从而减少丙酮酸从细胞质向线粒体内的转运,同时敲除sdh1,使工程菌株利用oTCA循环和rTCA循环积累琥珀酸,最终工程菌株在摇瓶发酵中积累了45.50 g/L琥珀酸,转化率达到0.66 g/g,产量与转化率均为目前在S. cerevisiae中报道的较高水
基于氧化及还原路径组合策略,山东大学祁庆生团队提出了一种Y. lipolytica高产琥珀酸的改造策略,以构建的一株敲除了sdh5、副产物乙酸合成关键基因ach1并强化表达了pyc的琥珀酸高产菌株PGC91为出发菌
1.2 辅因子供应优化
辅因子是细胞内能量传递的重要载体,辅因子供应与消耗的平衡对于维持细胞生长和提高细胞转化效率至关重
1.2.1 抑制辅因子竞争途径
代谢流分析能够帮助研究者定量分析不同代谢途径中碳流的分布,从而识别出哪些途径对辅因子的生成和消耗具有关键影
1.2.2 调整胞内辅因子比例
可溶性吡啶核苷酸转氢酶STH (由sth基因编码)是细菌中一种重要的酶,参与NADH和还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)之间的还原当量的交换,通过调节NADH和NADPH的相对水平,帮助维持细胞内的还原力平衡,这对细胞的正常代谢和抗氧化能力非常重
Rush
1.2.3 合成路径区室化定位
酵母中不同细胞器可以提供不同的微环境(如pH、氧化还原状态),某些底物和辅酶在一些细胞器中更容易被获得或消耗,例如,NADH和ATP更容易在线粒体内获得;乙酰辅酶A在过氧化物酶体中含量更
1.2.4 改变路径酶的辅因子偏好性
不同的辅因子(如NADH和NADPH)在细胞内的供应和需求是不同的,通过改变酶的辅因子偏好性,可以更好地利用细胞内的现有辅因子,减少途径间的代谢流竞争,从而减少副产物的积累,增强目标产物的生
1.3 琥珀酸跨膜转运工程
在有机酸的生产过程中,如果有机酸在细胞内积累过多,可能会对细胞造成毒性,导致胞内pH下降并抑制细胞的代谢活性,同时,中间产物或终产物的积累可能会导致代谢途径受到反馈抑制,抑制关键酶的活性,从而降低生产效
1.3.1 表达异源转运蛋白
细胞中产生的琥珀酸主要是以其共轭碱形式即琥珀酸二价阴离子存在,琥珀酸是一种四碳二羧酸,在生理pH条件下几乎完全解离,因此,琥珀酸无法通过简单的扩散通过细胞质膜,必须通过特定的转运蛋白实现跨膜转
1.3.2 鉴定与调控内源转运蛋白
虽然异源转运蛋白可能提供更高的转运效率,但通常更容易受到反馈抑制,因此,酵母中内源转运蛋白的鉴定与整合得到了越来越多的关注。近期,一系列AceTr家族的内源转运蛋白在S. cerevisiae中对琥珀酸的转运能力被鉴定,AnDCT-02和AceTr家族的ATO
除S. cerevisiae外,P. kudriavzevii中琥珀酸转运蛋白同样得到了鉴定,Xi
在Y. lipolytica中,琥珀酸通常在线粒体基质中进行合成,琥珀酸必须依次通过线粒体内膜和细胞质膜才能被分泌至胞外,因此在Y. lipolytica的琥珀酸合成中,位于线粒体内膜的线粒体载体(mitochondrial carriers, MCs)起着不可忽视的作
除了上述研究外,一些其他研究同样鉴定了部分不同来源的转运蛋白在酵母细胞中对琥珀酸的转运作用,例如Dulermo
2 酵母产琥珀酸细胞工厂的底物谱拓展
微生物大规模发酵中底物的选择直接影响菌体的生长及生产,并在生产成本中占有较高比例。酵母常用的碳源主要包括以葡萄糖为代表的一系列单糖以及甘油,各酵母由于自身代谢特性会有相应的优势利用碳源,不同的底物在前体合成以及能量供应上也会有所差异,因此,实现酵母利用廉价和丰富的底物生产琥珀酸是降低生产成本及提高生产效率的重要策略(

图2 酵母细胞工厂利用可再生原料合成琥珀酸
Figure 2 Yeast cell factory synthesizes succinic acid from renewable resource.
2.1 以非食品原料为底物发酵生产琥珀酸
目前大部分研究中,葡萄糖是琥珀酸发酵的首选碳源,能被微生物迅速代谢并提供充足的能量与前
2.1.1 甲醇
甲醇是一种低成本、可再生的非食品原料,具有广泛的应用前景,有望成为替代糖基化合物的主要生物生产原料。与葡萄糖相比,甲醇具有更强的还原性和更高的能量含量,更有利于细胞生长和生物合成,因此作为发酵底物展现出了巨大的潜
2.1.2 甘油
甘油作为生物燃料行业不可避免的副产物,原本会增加生物柴油厂的处理成本,将甘油转化为增值化学品是提高生物燃料经济可行性的必要方
2.1.3 木糖
木质纤维素是自然界中最丰富的原材料,每年全球木质纤维素产量超过2 200亿t,木糖是木质纤维素半纤维素部分中最普遍的糖,占总体的30%-40%,木糖的高效利用是实现将木质纤维素水解物生物转化为生物燃料或增值化学品的先决条
2.2 以可再生原料为底物发酵生产 琥珀酸
甘蔗渣、葵花籽粕等农业副产物或食品废弃物,成本低廉,丰富易得。使用这些原料可以显著降低琥珀酸生产的原料成本,提高经济效益,将工业废弃物转化为有价值的化学品,实现废物资源化,减少环境污染和资源浪
2.2.1 食物废弃物
食物废弃物在城市固体垃圾中占很大一部分,目前,除了被回收作为动物饲料和堆肥的部分外,食品废弃物的主要处理方法是焚烧并废弃在垃圾填埋场,这会导致温室气体的大量排放,并浪费土地、水、劳动力等生产资
2.2.2 农业残留物
农业残留物是指农业生产中产生的副产物,每年全国生产数亿吨农业残留物,这些废弃物排放量大、成分复杂,但未得到及时有效的处理,大量农业残留物仅经过简单处理或焚烧就被排放到自然界中,造成了严重的资源浪费和环境污染问
3 酵母产琥珀酸细胞工厂的抗逆性强化
微生物细胞工厂能够将各种原料转化为各种化学品,在实验室和工业规模下的发酵过程中,宿主通常会暴露在高温、低pH值、高渗透压等恶劣外部环境下。如果微生物对这些环境条件应激敏感,可能会影响细胞活性和整体代谢,提高微生物细胞工厂抗逆性可以让微生物在不利条件下维持较高的生产速率,从而满足预期的生产期望。因此,提高宿主对这些外界干扰的抗逆性成为微生物细胞工厂设计和构建中的主要考虑因素之一(

图3 适应性实验室进化提高酵母工程菌株抗逆性
Figure 3 Adaptive laboratory evolution enhances the stress tolerance of engineered yeast strains. SNG1: Protein involved in resistance to nitrosoguanidine and 6-azauracil; FIT3: Facilitator of iron transport; FZF1: Five zinc fingers; CBP3: Cytochrome b mRNA processing; PGL1: Polygalacturonase; GND2: 6-phosphogluconate dehydrogenase; SWF1: Glucose-6-phosphate dehydrogenase; GSH2: Glutathione synthase; TALEN: Transcription activator-like effector nucleases.
3.1 增强底物耐受性
为了提高发酵效率和经济性,工业发酵通常采用高浓度的底物(如高浓度葡萄糖或蔗糖)进行发酵,然而,高浓度的底物或底物的降解产物往往会对微生物造成渗透压和毒性压力,利用可再生资源或废弃物作为底物时也会产生一些微生物不易降解的组分或毒性物
3.1.1 适应性进化
适应性实验室进化是一种基于自然选择的策略,通常通过长时间反复将微生物暴露于逐步增加的底物浓度中,让它们自发进化出适应高底物浓度或有毒底物的能力,该策略不需要对微生物的基因组进行明确的基因编辑或改造,进化过程通常是无指导的,让微生物在特定条件下随机发生突变,然后筛选出耐受性更强的菌
酵母对可再生原料底物预处理过程中产生的抑制剂非常敏感,需要大量的代谢工程改造使其适应这类原料,酵母对可再生原料水解物的抗性是一个复杂的现象,虽然已有研究鉴定出一些解毒抗逆靶点,但其复杂机制仍未完全了
3.1.2 代谢工程改造
提高微生物细胞工厂的底物耐受性可以通过多种策略实现,适应性实验室进化依赖自然选择,操作简单且适用广泛,但时间成本较高;而理性改造通过基因编辑进行定向优化,效率高、精度高,在已对底物毒性机制有清晰了解的条件下能够更精准高效地增强菌株的抗逆
结合多种策略,例如适应性进化与理性改造的协同使用,可以进一步优化微生物的底物耐受性,使其适应工业生产中的复杂环境和底物毒性,提升发酵效率。
3.2 增强酸耐受性
在微生物发酵过程中经常会积累大量酸性产物或副产物,当外界pH过低时,过量的质子会通过跨膜运输,影响细胞内部pH稳态,导致宿主生长受限和最终产量下降,维持细胞内pH需要排出质子,这会消耗大量AT
4 总结与展望
琥珀酸作为重要的平台化合物,其微生物发酵生产技术已成为代谢工程领域的研究热点。酵母在合成琥珀酸方面具有多重优势:(1) 酵母遗传背景明确,易于基因工程改造,通过调控其关键代谢途径可以增加琥珀酸的产量;(2) 酵母能够利用多种碳源,包括葡萄糖、木糖、食品废物及农业副产物等,使非传统碳源的高效利用成为可能,为实现可持续生产提供了更多选择;此外,某些酵母菌种如P. kudriavzevii、K. marxianus等具有较强的耐高温或耐酸性,适合工业发酵条件。
虽然酵母具有比细菌宿主更优秀的表型,但酵母宿主目前达到的琥珀酸生物合成效率仍和细菌宿主存在一定差距,合成琥珀酸的过程中仍然面临着一系列待解决的瓶颈问题。TCA循环、乙醛酸循环等途径的复杂调控导致代谢流分配不平衡,要提高琥珀酸合成效率必须实现3条主要合成路径间代谢流的合理分配,以及氧化还原状态的稳定。在琥珀酸的发酵过程中,酵母往往会生成大量的副产物,如乙醇、乙酸和乳酸。这些副产物的产生不仅浪费了碳源,还可能与琥珀酸竞争辅因子和能量,高浓度的副产物还会对细胞造成毒害,进一步降低琥珀酸产量。尽管酵母可以利用多种碳源生物合成琥珀酸,但对于复杂的生物质底物或廉价的工业废料(如木质纤维素水解物)的利用效率仍然较低,酵母对非传统碳源的转化存在代谢阻碍,影响生产的经济性。高浓度的琥珀酸会对细胞产生毒性,导致细胞内pH降低,损害细胞膜完整性和酶活性。这种酸胁迫对生产菌株的生长和代谢效率有显著的抑制作用,限制了琥珀酸的高效生产。
为了实现琥珀酸高效生物合成,针对酵母生产琥珀酸存在的问题和瓶颈,未来可以通过以下策略逐步解决。(1) 代谢瓶颈的优化:通过代谢工程,重构关键途径的代谢流,平衡3条合成路径的碳流分配,结合还原与氧化路径,实现辅因子和能量供需平衡。同时,可以通过增强糖酵解或葡萄糖转运等途径提高琥珀酸的合成速率。针对参与琥珀酸合成的关键酶,如PYC和FRD,应用蛋白质工程技术提高酶的活性和稳定性,优化其催化效率,减少副产物的生成。(2) 提高菌株耐酸性:通过基因工程手段增强细胞膜的合成和修复途径,例如提高麦角固醇和脂肪酸合成,增强细胞对酸性环境的适应性,改善细胞膜的完整性和功能。通过过表达与酸性胁迫响应相关的转录因子,增强细胞的耐酸性。此外,还可以通过提高热休克蛋白HSP等蛋白的表达,增强蛋白质的折叠和修复能力,减轻琥珀酸对细胞内环境的破坏。通过实验室进化,筛选出适应酸性环境的高耐受性菌株。长期培养或适应高琥珀酸浓度的环境,可以获得更具耐酸性的生产菌株。(3) 减少副产物生成:通过代谢工程,优化琥珀酸合成途径,同时敲除或抑制与乙醇、乳酸等副产物合成相关的酶,避免副产物的生成。例如,抑制乙醇脱氢酶或乳酸脱氢酶的表达,优先将碳源用于琥珀酸合成。利用动态代谢控制策略,根据发酵过程中不同阶段的需求调节不同代谢途径的活性。通过设计响应琥珀酸浓度或pH的动态调控系统,可以在需要时增强琥珀酸合成,而减少副产物的生成。(4) 提高碳源利用效率:通过引入或优化能够代谢木糖等非传统碳源的代谢途径,提升酵母对多种碳源的利用能力。通过代谢工程设计,使酵母能够高效利用廉价且丰富的工业副产物(如木质纤维素水解物),降低生产成本。提高酵母对不同糖类的转运和代谢效率,增强糖转运蛋白的表达或活性,以提高底物的吸收速率,确保高效的琥珀酸生产。(5) 发酵工艺优化:开发无需中和剂的低pH发酵工艺,或者通过动态调控系统自动调节发酵过程中的pH,减少对外部中和剂的依赖,通过耐酸性菌株的开发,可以显著降低发酵过程中pH调节的复杂性和成本。优化发酵条件,实现细胞的高密度培养,从而提高琥珀酸的产量。在此过程中,可以优化营养供给、溶氧水平和搅拌速率等参数,使发酵效率达到最大化。通过整合连续发酵或灌流发酵技术,维持较高的生产速率和稳定的代谢流,减少副产物积累,提高琥珀酸的生产效率。结合产物分离技术(如膜分离或萃取)实现发酵与产品回收的同步进行,进一步提高工艺的经济性。(6) 系统生物学指导:系统生物学结合多组学数据(如基因组、转录组、代谢组)能够构建琥珀酸合成的代谢网络。通过计算机建模,可以模拟代谢流分布、能量代谢和物质平衡,揭示代谢瓶颈和关键节点。这为代谢工程提供了精准的靶点,帮助优化代谢途径以提高琥珀酸产量。机器学习算法可以分析大量实验数据,预测特定基因敲除或过表达对琥珀酸产量的影响,从而设计更高效的工程菌株。此外,机器学习能够识别复杂多基因网络中的协同作用,为多基因工程提供指导,进一步提升合成效率。
总之,生物基合成琥珀酸是目前生物基生产大宗化学品最有前途的案例之一,未来经过代谢工程、发酵工艺优化和细胞耐受性增强的多层面改进,酵母生产琥珀酸的瓶颈将逐步解决,推动其在工业化生产中的广泛应用。
作者贡献声明
顾子蕴:负责文献调研、文章撰写与修改;唐永圣:协助文献整理、内容补充和校对;陈修来:指导文章设计,审阅并修改终稿。
利益冲突
公开声明
参考文献
BOZELL JJ, PETERSEN GR. Technology development for the production of biobased products from biorefinery carbohydrates: the US department of energy’s “top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. [百度学术]
WERPY T, PETERSEN G, ADEN A, BOZELL J, HOLLADAY JJSF. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas[J]. Office of Scientific and Technical Information, 2004, 69: 1-65. [百度学术]
COK B, TSIROPOULOS I, ROES AL, PATEL MK. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(1): 16-29. [百度学术]
CHOI S, SONG CW, SHIN JH, LEE SY. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239. [百度学术]
AHN JH, JANG Y-S, LEE SY. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66. [百度学术]
LEE JA, AHN JH, LEE SY. Organic acids: Succinic and malic acids[M]//Comprehensive Biotechnology. Amsterdam: Elsevier, 2019: 172-187. [百度学术]
LA JANSEN M, van GULIK WM. Towards large scale fermentative production of succinic acid[J]. Current Opinion in Biotechnology, 2014, 30: 190-197. [百度学术]
LIU X, ZHAO G, SUN S, FAN C, FENG X, XIONG P. Biosynthetic pathway and metabolic engineering of succinic acid[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1-16. [百度学术]
刘嵘明, 梁丽亚, 吴明科, 姜岷. 微生物发酵生产丁二酸研究进展[J]. 生物工程学报, 2013, 29(10): 1386-1397. [百度学术]
LIU RM, LIANG LY, WU MK, JIANG M. Progress in microbial production of succinic acid[J]. Chinese Journal of Biotechnology, 2013, 29(10): 1386-1397 (in Chinese). [百度学术]
YANG Q, WU M, DAI ZX, XIN FX, ZHOU J, DONG WL, MA JF, JIANG M, ZHANG WM. Comprehensive investigation of succinic acid production by Actinobacillus succinogenes: a promising native succinic acid producer[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(5): 950-964. [百度学术]
GUARNIERI MT, CHOU YC, SALVACHÚA D, MOHAGHEGHI A, ST JOHN PC, PETERSON DJ, BOMBLE YJ, BECKHAM GT. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis[J]. Applied and Environmental Microbiology, 2017, 83(17): e00996-17. [百度学术]
OREOLUWA JOKODOLA E, NARISETTY V, CASTRO E, DURGAPAL S, COULON F, SINDHU R, BINOD P, RAJESH BANU J, KUMAR G, KUMAR V. Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes[J]. Bioresource Technology, 2022, 344: 126224. [百度学术]
LEE JW, YI J, KIM TY, CHOI S, AHN JH, SONG H, LEE M-H, LEE SY. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens[J]. Metabolic Engineering, 2016, 38: 409-417. [百度学术]
KIM JY, LEE JA, AHN JH, LEE SY. High-level succinic acid production by overexpressing a magnesium transporter in Mannheimia succiniciproducens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(37): e2407455121. [百度学术]
CHUNG SC, PARK JS, YUN J, PARK JH. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum[J]. Metabolic Engineering, 2017, 40: 157-164. [百度学术]
LI K, LI C, ZHAO XQ, LIU CG, BAI FW. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions[J]. Bioresource Technology, 2023, 378: 128991. [百度学术]
ZHU XN, TAN ZG, XU HT, CHEN J, TANG JL, ZHANG XL. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli[J]. Metabolic Engineering, 2014, 24: 87-96. [百度学术]
LEE PC, LEE WG, LEE SY, CHANG HN. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production[J]. Process Biochemistry, 1999, 35(1/2): 49-55. [百度学术]
钟驭涛, 尚长宇, 王言东, 李建华, 刘成才, 崔志勇, 祁庆生. 利用酵母细胞工厂合成丁二酸的研究进展[J]. 生物工程学报, 2024, 40(8): 2644-2665. [百度学术]
ZHONG YT, SHANG CY, WANG YD, LI JH, LIU CC, CUI ZY, QI QS. Advances in synthesis of succinic acid using yeast cell factories[J]. Chinese Journal of Biotechnology, 2024, 40(8): 2644-2665 (in Chinese). [百度学术]
KUMAR R, BASAK B, JEON BH. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach[J]. Journal of Cleaner Production, 2020, 277: 123954. [百度学术]
YADAV VG, DE MEY M, GIAW LIM C, KUMARAN AJIKUMAR P, STEPHANOPOULOS G. The future of metabolic engineering and synthetic biology: towards a systematic practice[J]. Metabolic Engineering, 2012, 14(3): 233-241. [百度学术]
CAVALLO E, CHARREAU H, CERRUTTI P, FORESTI ML. Yarrowia lipolytica: a model yeast for citric acid production[J]. FEMS Yeast Research, 2017, 17(8). DOI: 10.1093/femsyr/fox084. [百度学术]
WAHL SA, BERNAL MARTINEZ C, ZHAO Z, VAN GULIK WM, JANSEN MLA. Intracellular product recycling in high succinic acid producing yeast at low pH[J]. Microbial Cell Factories, 2017, 16(1): 90. [百度学术]
KIM JY, LEE JA, LEE SY. Biobased production of succinic acid and its derivatives using metabolically engineered microorganisms[J]. Industrial Biotechnology, 2023, 19(3): 125-137. [百度学术]
OTERO JM, CIMINI D, PATIL KR, POULSEN SG, OLSSON L, NIELSEN J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory[J]. PLOS One, 2013, 8(1): e54144. [百度学术]
CHENG KK, ZHAO XB, ZENG J, ZHANG JA. Biotechnological production of succinic acid: current state and perspectives[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(3): 302-318. [百度学术]
TORRES GUARDADO R, ROZÈS N, ESTEVE ZARZOSO B, REGUANT C, BORDONS A. Succinic acid production by wine yeasts and the influence of GABA and glutamic acid[J]. International Microbiology, 2024, 27(2): 505-512. [百度学术]
RYAN DG, APOS, NEILL LAJ. Krebs cycle reborn in macrophage immunometabolism[J]. Annual Review of Immunology, 2020, 38: 289-313. [百度学术]
SZETO SSW, REINKE SN, SYKES BD, LEMIRE BD. Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate[J]. Journal of Biological Chemistry, 2007, 282(37): 27518-27526. [百度学术]
HAO HX, KHALIMONCHUK O, SCHRADERS M, DEPHOURE N, BAYLEY JP, KUNST H, DEVILEE P, CREMERS CWRJ, SCHIFFMAN JD, BENTZ BG, GYGI SP, WINGE DR, KREMER H, RUTTER J. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma[J]. Science, 2009, 325(5944): 1139-1142. [百度学术]
GAO CJ, YANG XF, WANG HM, RIVERO CP, LI C, CUI ZY, QI QS, LIN CSK. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2016, 9(1): 179. [百度学术]
KUBO Y, TAKAGI H, NAKAMORI S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain[J]. Journal of Bioscience and Bioengineering, 2000, 90(6): 619-624. [百度学术]
REZAEI MN, ASLANKOOHI E, VERSTREPEN KJ, COURTIN CM. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation[J]. International Journal of Food Microbiology, 2015, 204: 24-32. [百度学术]
JOST B, HOLZ M, AURICH A, BARTH G, BLEY T, MÜLLER RA. The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1675-1686. [百度学术]
STEYN A, VILJOEN-BLOOM M, VAN ZYL WH. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion[J]. FEMS Microbiology Letters, 2023, 370: fnad003. [百度学术]
ENOMOTO K, OHKI R, MURATSUBAKI H. Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae[J]. DNA Research, 1996, 3(4): 263-267. [百度学术]
YAN DJ, WANG CX, ZHOU JM, LIU YL, YANG MH, XING JM. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. [百度学术]
ZAHOOR A, KÜTTNER FTF, BLANK LM, EBERT BE. Evaluation of pyruvate decarboxylase-negative Saccharomyces cerevisiae strains for the production of succinic acid[J]. Engineering in Life Sciences, 2019, 19(10): 711-720. [百度学术]
徐国强, 蒋伶活, 苏珂, 李佳雨, 刘维瑾, 范欧洋, 赵祯. 一种产琥珀酸的酿酒酵母基因工程菌及其应用: CN105838632A[P]. 2016-08-10. [百度学术]
FINLEY KR, HURYTA JM, MASTEL BM, MCMULLIN TW, POYNTER GM, RUSH BJ, WATTS KT, FOSMER AM, MCINTOSH VL, BRADY KM. Compositions and methods for succinate production: US20130302866[P]. 2013-11-14. [百度学术]
XIAO H, SHAO ZY, JIANG Y, DOLE S, ZHAO HM. Exploiting Issatchenkia orientalis SD108 for succinic acid production[J]. Microbial Cell Factories, 2014, 13(1): 121. [百度学术]
TRAN VG, MISHRA S, BHAGWAT SS, SHAFAEI S, SHEN YH, ALLEN JL, CROSLY BA, TAN SI, FATMA Z, RABINOWITZ JD, GUEST JS, SINGH V, ZHAO HM. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis[J]. Nature Communications, 2023, 14(1): 6152. [百度学术]
KORNBERG HL, KREBS HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle[J]. Nature, 1957, 179(4568): 988-991. [百度学术]
KORNBERG HL. The role and control of the glyoxylate cycle in Escherichia coli[J]. Biochemical Journal, 1966, 99(1): 1-11. [百度学术]
RAAB AM, GEBHARDT G, BOLOTINA N, WEUSTER-BOTZ D, LANG C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J]. Metabolic Engineering, 2010, 12(6): 518-525. [百度学术]
YANG XF, WANG HM, LI C, LIN CSK. Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy[J]. Journal of Agricultural and Food Chemistry, 2017, 65(20): 4133-4139. [百度学术]
LEE SJ, SONG H, LEE SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production[J]. Applied and Environmental Microbiology, 2006, 72(3): 1939-1948. [百度学术]
王学明, 潘静宇, 吴静, 陈修来, 高聪, 宋伟, 魏婉清, 刘佳, 刘立明. 调控大肠杆菌胞内ATP和NADH水平促进琥珀酸生产[J]. 生物工程学报, 2023, 39(8): 3236-3252. [百度学术]
WANG XM, PAN JY, WU J, CHEN XL, GAO C, SONG W, WEI WQ, LIU J, LIU LM. Regulation of intracellular level of ATP and NADH in Escherichia coli to promote succinic acid production[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3236-3252 (in Chinese). [百度学术]
GAO C, TANG WX, GUO L, HU GP, LIU J, LIU LM, CHEN XL. Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli[J]. Systems Microbiology and Biomanufacturing, 2022, 2(2): 331-344. [百度学术]
RAAB AM, LANG C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae[J]. Bioengineered Bugs, 2011, 2(2): 120-123. [百度学术]
RENDULIĆ T, PERPELEA A, ORTIZ JPR, CASAL M, NEVOIGT E. Mitochondrial membrane transporters as attractive targets for the fermentative production of succinic acid from glycerol in Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2024, 24: foae009. [百度学术]
CUI ZY, GAO CJ, LI JJ, HOU J, LIN CSK, QI QS. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH[J]. Metabolic Engineering, 2017, 42: 126-133. [百度学术]
CUI ZY, ZHONG YT, SUN ZJ, JIANG ZN, DENG JY, WANG Q, NIELSEN J, HOU J, QI QS. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica[J]. Nature Communications, 2023, 14(1): 8480. [百度学术]
WANG YP, SAN KY, BENNETT GN. Cofactor engineering for advancing chemical biotechnology[J]. Current Opinion in Biotechnology, 2013, 24(6): 994-999. [百度学术]
陈修来, 刘佳, 罗秋玲, 刘立明. 微生物辅因子平衡的代谢调控[J]. 生物工程学报, 2017, 33(1): 16-26. [百度学术]
CHEN XL, LIU J, LUO QL, LIU LM. Manipulation of cofactor balance in microorganisms[J]. Chinese Journal of Biotechnology, 2017, 33(1): 16-26 (in Chinese). [百度学术]
钱芷兰, 宋丽丽, 刘启, 龚秀龙, 康艺嘉, 何子雨, 龙浩雨, 蔡孟浩. 非常规酵母天然产物合成[J]. 生物工程学报, 2023, 39(6): 2284-2312. [百度学术]
QIAN ZL, SONG LL, LIU Q, GONG XL, KANG YJ, HE ZY, LONG HY, CAI MH. Biosynthesis of natural products by non-conventional yeasts[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2284-2312 (in Chinese). [百度学术]
SAUER U. Metabolic networks in motion:
NISSEN TL, ANDERLUND M, NIELSEN J, VILLADSEN J, KIELLAND-BRANDT MC. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool[J]. Yeast, 2001, 18(1): 19-32. [百度学术]
XI YY, XU HT, ZHAN T, QIN Y, FAN FY, ZHANG XL. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH[J]. Metabolic Engineering, 2023, 75: 170-180. [百度学术]
RUSH BJ, WATTS KT, JR VLM, FOSMER AM, POYNTER GM, MCMULLIN TW. Yeast cells having reductive tca pathway from pyruvate to succinate and overexpressing an exogenous nad(p)+ transhydrogenase enzyme: EP2877568[P]. 2014-01-30. [百度学术]
栾韬, 尹梦琦, 王明, 康秀龙, 赵建志, 鲍晓明. 酿酒酵母细胞器区室化合成化学品的研究进展[J]. 生物工程学报, 2023, 39(6): 2334-2358. [百度学术]
LUAN T, YIN MQ, WANG M, KANG XL, ZHAO JZ, BAO XM. Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2334-2358 (in Chinese). [百度学术]
ZHU ZT, DU MM, GAO B, TAO XY, ZHAO M, REN YH, WANG FQ, WEI DZ. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction[J]. Metabolic Engineering, 2021, 68: 232-245. [百度学术]
KATZBERG M, SKORUPA-PARACHIN N, GORWA-GRAUSLUND MF, BERTAU M. Engineering cofactor preference of ketone reducing biocatalysts: z mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example[J]. International Journal of Molecular Sciences, 2010, 11(4): 1735-1758. [百度学术]
SLIVINSKAYA EA, PLEKHANOVA NS, ALTMAN IB, YAMPOLSKAYA TA. Engineering of Escherichia coli glyceraldehyde-3-Phosphate dehydrogenase with dual NAD+/NADP+ cofactor specificity for improving amino acid production[J]. Microorganisms, 2022, 10(5): 976. [百度学术]
ZHANG XL, FAN FY, XI YY, XU HT. Acid-resistant yeast strain for high yield of succinic acid, and construction method and application thereof: CN118475683A[P]. 2024-08-09. [百度学术]
KELL DB, SWAINSTON N, PIR P, OLIVER SG. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis[J]. Trends in Biotechnology, 2015, 33(4): 237-246. [百度学术]
BOYARSKIY S, TULLMAN-ERCEK D. Getting pumped: membrane efflux transporters for enhanced biomolecule production[J]. Current Opinion in Chemical Biology, 2015, 28: 15-19. [百度学术]
SOARES-SILVA I, RIBAS D, SOUSA-SILVA M, AZEVEDO-SILVA J, RENDULIĆ T, CASAL M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications[J]. FEMS Microbiology Letters, 2020, 367(15): fnaa118. [百度学术]
CASAL M, PAIVA S, QUEIRÓS O, SOARES-SILVA I. Transport of carboxylic acids in yeasts[J]. FEMS Microbiology Reviews, 2008, 32(6): 974-994. [百度学术]
ZELLE RINTZE M, de HULSTER E, van WINDEN WOUTER A, de WAARD P, DIJKEMA C, WINKLER AARON A, GEERTMAN JAN-MAARTEN A, van DIJKEN JOHANNES P, PRONK JACK T, van MARIS ANTONIUS JA. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export[J]. Applied and Environmental Microbiology, 2008, 74(9): 2766-2777. [百度学术]
VERWAAL R, WU L, DAMVELD RA, SAGT CMJ. Succinic acid production in a eukaryotic cell: US20120165569[P]. 2012-06-28. [百度学术]
CHEN XL, WANG YC, DONG XX, HU GP, LIU LM. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production[J]. Applied Microbiology and Biotechnology, 2017, 101(10): 4041-4052. [百度学术]
XIBERRAS J, KLEIN M, DE HULSTER E, MANS R, NEVOIGT E. Engineering Saccharomyces cerevisiae for succinic acid production from glycerol and carbon dioxide[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 566. [百度学术]
JIANG ZN, CUI ZY, ZHU ZW, LIU YH, TANG YJ, HOU J, QI QS. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose[J]. Biotechnology for Biofuels, 2021, 14(1): 145. [百度学术]
CAMARASA C, BIDARD F, BONY M, BARRE P, DEQUIN S. Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2001, 67(9): 4144-4151. [百度学术]
RENDULIĆ T, MENDONÇA BAHIA F, SOARES-SILVA I, NEVOIGT E, CASAL M. The dicarboxylate transporters from the AceTr family and dct-02 oppositely affect succinic acid production in S. cerevisiae[J]. Journal of Fungi, 2022, 8(8): 822. [百度学术]
XI YY, ZHAN T, XU HT, CHEN J, BI CH, FAN FY, ZHANG XL. Characterization of JEN family carboxylate transporters from the acid-tolerant yeast Pichia kudriavzevii and their applications in succinic acid production[J]. Microbial Biotechnology, 2021, 14(3): 1130-1147. [百度学术]
TAYLOR EB. Functional properties of the mitochondrial carrier system[J]. Trends in Cell Biology, 2017, 27(9): 633-644. [百度学术]
YUZBASHEVA EY, SCARCIA P, YUZBASHEV TV, MESSINA E, KOSIKHINA IM, PALMIERI L, SHUTOV AV, TARATYNOVA MO, AMARO RL, PALMIERI F, SINEOKY SP, AGRIMI G. Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate-tricarboxylate carriers[J]. Metabolic Engineering, 2021, 65: 156-166. [百度学术]
DULERMO R, GAMBOA-MELéNDEZ H, MICHELY S, THEVENIEAU F, NEUVéGLISE C, NICAUD JM. The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia[J]. MicrobiologyOpen, 2015, 4(1): 100-120. [百度学术]
SOARES-SILVA I, RIBAS D, FOSKOLOU IP, BARATA B, BESSA D, PAIVA S, QUEIRÓS O, CASAL M. The Debaryomyces hansenii carboxylate transporters Jen1 homologues are functional in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2015, 15(8): fov094. [百度学术]
JIANG M, MA JF, WU MK, LIU RM, LIANG LY, XIN FX, ZHANG WM, JIA HH, DONG WL. Progress of succinic acid production from renewable resources:metabolic and fermentative strategies[J]. Bioresource Technology, 2017, 245: 1710-1717. [百度学术]
ANTONIEWICZ MR. Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production[J]. Current Opinion in Biotechnology, 2019, 59: 165-174. [百度学术]
ZHANG SJ, GUO F, YANG Q, JIANG YJ, YANG SH, MA JF, XIN FX, HASUNUMA T, KONDO A, ZHANG WM, JIANG M. Improving methanol assimilation in Yarrowia lipolytica via systematic metabolic engineering combined with compartmentalization[J]. Green Chemistry, 2023, 25(1): 183-195. [百度学术]
CHEN Z, LIU DH. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol[J]. Biotechnology for Biofuels, 2016, 9(1): 205. [百度学术]
YAZDANI SS, GONZALEZ R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry[J]. Current Opinion in Biotechnology, 2007, 18(3): 213-219. [百度学术]
ONG KL, FICKERS P, LIN CSK. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate[J]. Science of The Total Environment, 2020, 702: 134911. [百度学术]
KWAK S, JO JH, YUN EJ, JIN YS, SEO JH. Production of biofuels and chemicals from xylose using native and engineered yeast strains[J]. Biotechnology Advances, 2019, 37(2): 271-283. [百度学术]
ATTFIELD PV, BELL PJL. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source[J]. FEMS Yeast Research, 2006, 6(6): 862-868. [百度学术]
PRABHU AA, LEDESMA-AMARO R, LIN CSK, COULON F, THAKUR VK, KUMAR V. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control[J]. Biotechnology for Biofuels, 2020, 13(1): 113. [百度学术]
YAFETTO L, ODAMTTEN GT, WIAFE-KWAGYAN M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: a review of the global and Ghanaian case[J]. Heliyon, 2023, 9(4): e14814. [百度学术]
GINNI G, KAVITHA S, YUKESH KR, BHATIA SK, ADISH KS, RAJKUMAR M, KUMAR G, PUGAZHENDHI A, CHI NTL, RAJESH BJ. Valorization of agricultural residues: different biorefinery routes[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105435. [百度学术]
PHAM TPT, KAUSHIK R, PARSHETTI GK, MAHMOOD R, BALASUBRAMANIAN R. Food waste-to-energy conversion technologies: current status and future directions[J]. Waste Management, 2015, 38: 399-408. [百度学术]
ORTIZ-SANCHEZ M, INOCENCIO-GARCíA PJ, ALZATE-RAMÍREZ AF, ALZATE CAC. Potential and restrictions of food-waste valorization through fermentation processes[J]. Fermentation, 2023, 9(3): 274. [百度学术]
LI C, YANG XF, GAO S, CHUH AH, LIN CSK. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica[J]. Journal of Cleaner Production, 2018, 179: 151-159. [百度学术]
LI C, ONG KL, YANG XF, LIN CSK. Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control[J]. Chemical Engineering Journal, 2019, 371: 804-812. [百度学术]
ZHANG MQ, SHI AP, AJMAL M, YE LH, AWAIS M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting[J]. Biomass Conversion and Biorefinery, 2023, 13(7): 5445-5468. [百度学术]
ONG KL, LI C, LI XT, ZHANG Y, XU JL, LIN CSK. Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica[J]. Biochemical Engineering Journal, 2019, 148: 108-115. [百度学术]
DHARMAKAR P, AANAND S, KUMAR JSS, ANDE MP, PADMAVATHY P, PEREIRA JJ. Solid-state fermentation of sunflower meal using commercial yeast for use as an improved nutrient source in aquafeed[J]. International Journal of Applied Research, 2022, 8(3): 375-378. [百度学术]
EFTHYMIOU MN, PATERAKI C, PAPAPOSTOLOU H, LIN CSK, KOUTINAS A. Restructuring the sunflower-based biodiesel industry into a circular bio-economy business model converting sunflower meal and crude glycerol into succinic acid and value-added co-products[J]. Biomass and Bioenergy, 2021, 155: 106265. [百度学术]
HASSAN MA, AHMAD FARID MA, SHIRAI Y, ARIFFIN H, OTHMAN MR, SAMSUDIN MH, HASAN MY. Oil palm biomass biorefinery for sustainable production of renewable materials[J]. Biotechnology Journal, 2019, 14(6): e1800394. [百度学术]
ZEVALLOS TORRES LA, LORENCI WOICIECHOWSKI A, NISHIDA VS, VALLADARES-DIESTRA KK, PORTO DE SOUZA VANDENBERGHE L, ZANDONA FILHO A, SOCCOL CR. Imidazole pretreatment of oil palm empty fruit bunches for ethanol and succinic acid co-production by Saccharomyces cerevisiae and Pichia stipitis[J]. BioEnergy Research, 2023, 16(2): 990-1000. [百度学术]
GOMAR-ALBA M, MORCILLO-PARRA MÁ, OLMO ML. Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions[J]. FEMS Yeast Resarch, 2015, 15(5): fov039. [百度学术]
YUN JH, ZABED HM, ZHANG YF, ZHANG GY, ZHAO M, QI XH. Improving tolerance and 1,3-propanediol production of Clostridium butyricum using physical mutagenesis, adaptive evolution and genome shuffling[J]. Bioresource Technology, 2022, 363: 127967. [百度学术]
EOM GE, LEE HB, KIM SK. Development of a genome-targeting mutator for the adaptive evolution of microbial cells[J]. Nucleic Acids Research, 2021, 50(7): e38. [百度学术]
YUZBASHEV TV, BONDARENKO PY, SOBOLEVSKAYA TI, YUZBASHEVA EY, LAPTEV IA, KACHALA VV, FEDOROV AS, VYBORNAYA TV, LARINA AS, SINEOKY SP. Metabolic evolution and
AYEPA E, LI Q, ZHANG ZY, WANG HY, HERMAN RA, OUYANG YD, KUANG XL, TAFERE GA, MA MG Molecular mechanism of tolerance evolution in Candida tropicalis to inhibitory compounds derived from corn stover hydrolysis[J]. Biomass and Bioenergy, 2024, 181: 107031. [百度学术]
STOVICEK V, DATO L, ALMQVIST H, SCHÖPPING M, CHEKINA K, PEDERSEN LE, KOZA A, FIGUEIRA D, TJOSÅS F, FERREIRA BS, FORSTER J, LIDÉN G, BORODINA I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 22. [百度学术]
MOSER JW, PRIELHOFER R, GERNER SM, GRAF AB, WILSON IBH, MATTANOVICH D, DRAGOSITS M. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris[J]. Microbial Cell Factories, 2017, 16(1): 49. [百度学术]
KONZOCK O, ZAGHEN S, NORBECK J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates[J]. BMC Microbiology, 2021, 21(1): 77. [百度学术]
ALMEIDA JRM, BERTILSSON M, GORWA-GRAUSLUND MF, GORSICH S, LIDÉN G. Metabolic effects of furaldehydes and impacts on biotechnological processes[J]. Applied Microbiology and Biotechnology, 2009, 82(4): 625-638. [百度学术]
LIU ZL, MA MG, SONG MZ. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways[J]. Molecular Genetics and Genomics, 2009, 282(3): 233-244. [百度学术]
ZHONG YT, GU JH, SHANG CY, DENG JY, LIU YH, CUI ZY, LU XM, QI QS. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH[J]. Bioresource Technology, 2024, 408: 131166. [百度学术]
JIANG T, LI CY, TENG YX, ZHANG RH, YAN YJ. Recent advances in improving metabolic robustness of microbial cell factories[J]. Current Opinion in Biotechnology, 2020, 66: 69-77. [百度学术]
CAO WF, CAO WL, SHEN F, LUO J, YIN JQ, QIAO CS, WAN YH. A sustainable pH shift control strategy for efficient production of β-poly(L-malic acid) with CaCO3 addition by Aureobasidium pullulans ipe-1[J]. Applied Microbiology and Biotechnology, 2020, 104(20): 8691-8703. [百度学术]
ZHONG YT, SHANG CY, TAO HL, HOU J, CUI ZY, QI QS. Boosting succinic acid production of Yarrowia lipolytica at low pH through enhancing product tolerance and glucose metabolism[J]. Microbial Cell Factories, 2024, 23(1): 291. [百度学术]
XIE CY, SU RR, WU B, SUN ZY, TANG YQ. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid[J]. BMC Microbiology, 2024, 24(1): 158. [百度学术]
ZENG DW, YANG YQ, WANG Q, ZHANG FL, ZHANG MD, LIAO S, LIU ZQ, FAN YC, LIU CG, ZHANG L, ZHAO XQ. Transcriptome analysis of Kluyveromyces marxianus under succinic acid stress and development of robust strains[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 293. [百度学术]