摘要
莽草酸(shikimic acid, SA)是一种重要的天然化合物,在生物体内具有抗病毒、抗血栓、镇痛、抑菌、抑制恶性肿瘤等多重功能,广泛应用于医药、化妆品、食品和农业等领域,因此被视为是极具潜力的生物分子。作为芳香族化合物的前体,莽草酸在生物体内的代谢途径中起着重要作用。传统的莽草酸生产方式主要依赖于从植物(如八角茴香)中提取或通过化学合成,这些方法不仅成本高、效率低,还对环境造成负担。随着合成生物学和代谢工程技术的不断进步,利用生物代谢工程技术生产莽草酸因其更高的可持续性和经济性,逐渐成为研究热点。本文综述了莽草酸的应用领域及其生产方法,并重点阐述了其生物合成的研究进展与优化策略。
莽草酸(shikimic acid, SA),即3,4,5-三羟基-1-环己烯-1-甲酸(

图1 莽草酸分子结构
Figure 1 Molecular structure of shikimic acid.
莽草酸是一种重要的有机酸,在生物医学、食品营养补充、化学工业生产、化妆品生产以及农业植物生长调节等多个领域展现出广泛的应用价值(

图2 莽草酸的应用
Figure 2 Application of shikimic acid.
莽草酸途径是细菌、高等植物、真菌和顶复门寄生虫中芳香氨基酸和其他代谢物生物合成的常见途径,但哺乳动物中不存在此途
1 莽草酸的应用及分析方法
1.1 莽草酸的应用
1.1.1 莽草酸在医药及食品保健领域的应用
莽草酸在生物医药领域的应用至关重要,它在抗病毒、抗血栓、镇痛、抑菌、抑制恶性肿瘤等方面展现出显著的治疗潜力(

图3 从莽草酸合成奥司他韦的主要反应过程
Figure 3 Synthesis of oseltamivir from shikimic acid. r.t.: Room temperature.
动脉粥样硬化(atherosclerosis, AS)是心血管系统疾病中比较常见的一种疾病。莽草酸通过影响花生四烯酸(arachidonic acid, ARA)的代谢来抑制血小板的聚集,以及动静脉血栓及脑血栓的形
Quiñones
莽草酸还具有一定的镇痛效果。在对小鼠的研究中,注射从八角提取的莽草酸稀释液后,小鼠在刺激条件下的疼痛阈值提高,扭体反应次数显著减
在食品保健领域,莽草酸在糖尿病治疗中展现出重要作用。Al-Malk
1.1.2 莽草酸在农业植物领域的应用
Aldesuquy
1.1.3 莽草酸在化妆品领域的应用
Sinerga公司探讨了莽草酸在化妆品中的应用,并以Verochic作为莽草酸的代名词进行商业化推
1.2 莽草酸的分析方法
目前,莽草酸的分析方法主要有分光光度法(spectrophotometry, STR)、高效液相色谱法(HPLC)和毛细管电泳法(capillary electrophoresis, EC)。使用分光光度计测量莽草酸的含量,具有方法简单、检测快捷、耗时短、成本低等优
2 莽草酸的生产合成
莽草酸的工业生产方式如

图4 莽草酸生产合成方式
Figure 4 Shikimic acid production and synthesis method.
2.1 植物提取法生产莽草酸
植物提取法是从天然植物中提取莽草酸的方法,常见的来源有八角茴香和日本莽草等,其他植物如北美枫香树的果实及树皮和树叶、湿地松和马尾松的松针、冷杉的茎和叶、金丝桃、雪松的树叶中也含有莽草
植物 Plant | 莽草酸含量最高组织 Tissue with highest SA | 莽草酸含量 SA content (%) |
---|---|---|
Illicium religiosum | Fruit | 24.05 |
Illicium pachyphyllum | Fruit | 16.21 |
Terminalia arjuna | Fruit | 15.64 |
Pistacia lentiscus | Whole plant | 13.28 |
Ribes aureum | Whole plant | 12.68 |
Symphytum officinalis | Leaves | 12.53 |
Actaea pachypoda | Whole plant | 12.21 |
Alangium salvifollium | Root | 11.77 |
Gingko biloba | Leaves | 9.79 |
Viratum viride | Leaves | 9.21 |
Dipsacus laciniatus | Leaves | 8.57 |
Agastache urticifolia | Whole plant | 8.40 |
Inula helenium | Leaves | 8.35 |
Hypericum spp. | Whole plant | 8.12 |
Commelina bengalensis | Stem | 7.33 |
Gymnema sylvestris | Leaves | 6.79 |
Terminalia chebula | Fruit | 5.94 |
Illicium floridanum | Leaves | 5.69 |
Hemidesmus indicus | Root | 5.42 |
Cistus incanus | Whole plant | 5.39 |
Sida acuta | Whole plant | 4.46 |
Celastrus paniculata | Leaves | 4.14 |
Glycosmis muricata | Root | 4.11 |
Tanacetum parthenium | Leaves & flowers | 3.74 |
Triticum aestivum | Leaves | 3.57 |
Hypericum dolabriforme | Whole plant | 3.45 |
Dipsacus pilosus | Leaves | 3.29 |
Triadenum walteri | Whole plant | 3.27 |
Hypericum flondosum | Whole plant | 3.26 |
Terminalia pallida | Leaves | 3.06 |
Hemidesmus indicus | Whole plant | 2.83 |
Epilobium angustifolium | Whole plant | 2.63 |
Ribes cerenum | Whole plant | 2.23 |
Melisa officinalis | Leaves | 1.75 |
Pueraria lobata (Kudzu) | Root | 1.59 |
Myrtus communis | Whole plant | 1.37 |
Tanecetum vulgare | Whole plant | 1.21 |
Vaccinium ovatum | Leaves | 1.19 |
Evolvulus alsinoides | Whole plant | 1.01 |
Ledum glandulosum | Flowers | 0.96 |
Primual veris | Flowers | 0.87 |
Dipsacus asperoides | Rhizome | 0.70 |
Xerophyllum tenax | Whole plant | 0.67 |
Stevia rebaudiana | Leaves | 0.66 |
Arbutus unedo | Whole plant | 0.59 |
Strychnos nux vomica | Leaves | 0.55 |
Alangium salvifollium | Leaves | 0.55 |
Bacopa monnieri | Whole plant | 0.46 |
Matricaria recutita-chamomilla | Flowers | 0.38 |
Hibiscus sabdariffa | Flowers | 0.30 |
Rudbeckia lanciniata | Root | 0.27 |
Nepeta caterica | Leaves & young parts | 0.25 |
(待续)
目前,植物提取法主要包括水浸提取
2.2 化学合成法生产莽草酸
化学合成法不依赖于自然资源,能够稳定生产,避免了因季节性因素等导致的原料短缺问
2.3 生物合成法生产莽草酸
鉴于莽草酸巨大的应用潜力,开发有效且环保的方法以大规模生产莽草酸显得尤为重要。随着生物技术的迅速发展,微生物发酵法在莽草酸的工业生产中逐渐展现出其独特优势。罗氏制药公司曾因植物来源的莽草酸短缺而无法满足需求,于是试图通过生物发酵途径生产莽草
3 莽草酸的生物合成及优化策略
3.1 莽草酸途径
莽草酸合成途径是合成莽草酸的关键路径,广泛存在于植物、真菌和细菌等非哺乳动物的细胞

图5 莽草酸途径。PTS:磷酸转移酶系统;G6P:葡萄糖-6-磷酸;PEP:磷酸烯醇式丙酮酸;PPP:戊糖磷酸途径;PYR:丙酮酸;TCA循环:三羧酸循环;E4P:d-赤藓糖-4-磷酸;DAHP:3-脱氧-d-庚酮糖酸-7-磷酸;DHQ:3-脱氢奎尼酸;DHS:3-脱氢莽草酸;SA:莽草酸;S3P:莽草酸-3磷酸;EPSP:5-烯醇丙酮酰莽草酸-3-磷酸;CHA:分支酸;QA:奎尼酸;GA:没食子酸;PCA:原儿茶酸;Phe:苯丙氨酸;Tyr:酪氨酸;Trp:色氨酸;Glk:葡萄糖激酶;PYKA/F:丙酮酸激酶;PPSA:磷酸烯醇式丙酮酸合成酶;AroH/AroF/AroG:3-脱氧-d-阿拉伯-庚酮糖酸-7-磷酸合成酶;AroB:3-脱氢奎尼酸合成酶;AroD:3-脱氢奎尼酸脱水酶;AroE:莽草酸脱氢酶;AroK/AroL:莽草酸激酶;YdiB:奎尼酸/莽草酸脱氢酶;QsuB:3-脱氢莽草酸脱水酶;QsuD:奎尼酸/莽草酸脱氢酶;AroA:5-烯醇丙酮酰莽草酸-3-磷酸合成酶;AroC:分支酸合成酶。
Figure 5 Shikimic acid pathway. PTS: Phosphotransferase system; G6P: Glucose-6-phosphate; PEP: Phosphoenolpyruvate; PPP: Pentose phosphate pathway; PYR: Pyruvate; TCA cycle: Tricarboxylic acid cycle; E4P: Erythrose 4-phosphate; DAHP: 3-deoxy-d-arabino-heptulosonic acid 7-phosphate; DHQ: 3-dehydroquinate acid; DHS: 3-dehydroshikimate acid; SA: Shikimic acid; S3P: Shikimate-3phosphate; EPSP: 5-enolpyruvylshikimate-3-phosphate; CHA: Chorismate acid; QA: Quinic acid; GA: Gallic acid; PCA: Protocatechuate; Phe: Phenylalanine; Tyr: Tyrosine; Trp: Tryptophan; Glk: Glucokinase; PykA/F: Pyruvate kinase; PpsA: Phosphoenolpyruvate synthase; AroH/AroF/AroG: 3-deoxy-d-arabinoheptanoate heptaphosphate synthase; AroB: 3-dehydroquinate synthase; AroD: 3-dehydroquinate dehydratase; AroE: Shikimate dehydrogenase; AroK/AroL: Shikimate kinase; YdiB: Quinate/shikimate dehydrogenase; QsuB: 3-dehydroshikimate dehydratase; qsuD: Quinic acid/shikimate dehydrogenase; AroA: 5-enolpyruvylshikimate-3-phosphate synthase; AroC: Chorismate synthase.
3.2 高效生产莽草酸生物工程菌的构建
3.2.1 增强前体物质合成
通路基因的适度表达对于将起始材料高效转化为最终产物至关重要。然而,过高的表达水平可能会加重宿主细胞的负担,导致不必要的蛋白质生产占用细胞资
在大肠杆菌中,葡萄糖的吸收和磷酸化主要通过磷酸转移酶系统(PTS)完
构建磷酸转移酶系统(PTS)缺陷突变体PT
此外,由于细胞内E4P的合成较少,远低于PEP,因此提升E4P的合成是改造的重要策略。通过提高zwf基因和tkt A基因的表达量以增强葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase, G6PD)和转酮醇酶I (transketolase I, TktA I)的表达活性,可以提高莽草酸合成底物E4P的可用性;同样地,使由pykA和pykF编码的丙酮酸激酶(pyruvate kinase isozyme, Pyk)失活,或通过质粒中编码的ppsA基因促进丙酮酸转化为PEP用作下游莽草酸合成的底物。然而,Garrido-Pertierra
谷氨酸棒杆菌(Corynebacterium glutamicum)是一种具有巨大潜力的底盘微生物,能够利用多种底物合成多种化学物质。这种微生物的灵活性使其在工业生物转化和合成生物化学品方面展现出广泛的应用前
3-脱氢莽草酸是莽草酸合成的前体物质,在aroE的催化下合成莽草酸。Choi
3.2.2 强化途径中的酶活性
操纵核心基因表达是影响代谢通路中酶合成的关键手段,这种调节机制对于优化生产途径至关重
Escalante
吴伟
3.2.3 截堵莽草酸分支途径
莽草酸作为芳香族氨基酸途径中的生物合成中间体,优化内源途径并阻断其下游代谢过程已成为生产莽草酸的首选策略。这种方法通过调控代谢流向,使更多前体物质转化为目标产物,从而有效提升莽草酸的合成效率与产量。因此,构建莽草酸激酶失活的工程菌株成为实现高产莽草酸的重要途径之一。Lee
除了阻断莽草酸的下游途径外,阻断竞争途径也能进一步提升莽草酸的产量。在大肠杆菌中,奎尼酸(quinic acid, QA)和没食子酸(gallic acid, GA)是莽草酸合成的竞争产
3.3 莽草酸发酵生产优化
3.3.1 培养基与培养条件优化
培养条件对微生物的发酵生产具有显著影响,包括培养基成分、温度、pH值、通气量和搅拌速率等因
Tripathi
3.3.2 分离提取工艺优化
与化学合成相比,生物发酵法使用的原料相对简单且不含有害化学品,因此其提取物通常能够保证产品的安全性。然而,发酵液中产品含量较低仍是一个亟待解决的问题。近年来,莽草酸的提取和纯化技术取得了显著进步,不仅降低了生产成本,还提升了产品纯度。这些技术的进步增强了生物发酵法在工业中的竞争力,尤其是在食品、药品和化妆品等领域展现出更大的应用潜力。
徐柳
3.4 合成生物学策略提高莽草酸产量
基于质粒的表达系统对宿主菌株进行遗传改进是一种相对简单且快速的方法,用于展现代谢表型。然而,这种方法也面临一些挑战,如由代谢负担引起的细胞生长迟缓、质粒在细胞繁殖过程中的不稳定
3.4.1 生物传感器的应用
有效构建人工信号系统是合成生物学的重要目标,这些系统涉及从单一蛋白质到更复杂的通路和网络,旨在实现对整个生物体的精准调控。这些系统在分子诊断、细胞基础的生物传感器、治疗方法以及工业生物技术等多个领域中展现出广泛的应用潜

图6 合成生物学策略的应用。A:SHIR生物传感器的设计;B:用于莽草酸生产的TPAS和TPRS的设计。
Figure 6 Application of synthetic biology strategies. A: Design of ShiR biosensor; B: Design of TPAS and TPRS for shikimic acid production.
3.4.2 动态分子开关的开发
调节开关是一种能够在2种状态之间可逆转换的信号转导系统,允许细胞感知并响应特定信号,从而进行适当的机制改变,具有自定义输入和输出功能的定制蛋白质开关已成为报告不同生理状态和实时原位启动分子功能的宝贵研究工
光遗传学提供了一种潜在的策略来开发光诱导电路,这些电路能够有条件地控制代谢通量的重新分配以增强微生物的生产能力。Komera
4 文献信息学分析
本综述对2019年1月至2024年6月期间与莽草酸合成相关的文献进行了全面检索。数据来源于中国知网数据库(China National Knowledge Infrastructure, CNKI),检索主题为 “莽草酸合成+莽草酸途径”,筛选文献类型为学术期刊、学位论文、会议论文,共得到203条检索结果,确保研究重点集中在与莽草酸合成密切相关的最新研究上。为进一步分析所获得的数据,使用了CiteSpace软件(v6.3.R1,德雷克塞尔大学,2024),该软件在学术文献趋势和热点的可视化方面发挥着至关重要的作用。
在核心关键词聚类分析中(

图7 核心关键词聚类分析
Figure 7 Core keyword clustering analysis.
5 总结与展望
莽草酸作为一种关键的芳香族代谢中间体,在植物的生物合成过程中具有重要意义。近年来,随着分子生物学与代谢工程技术的不断进步,莽草酸的合成途径及其调控机制得到了深入探讨。代谢工程和合成生物学的应用使得微生物在莽草酸及其衍生物的生产中展现出更高的效率,目前对于工程菌改造合成莽草酸已取得了一定成效(
菌株 Strains | 策略 Strategy | 产量 Titer (g/L) | 参考文献 References |
---|---|---|---|
Escherichia coli | Different glucose transport systems | 60.00 |
[ |
Corynebacterium glutamicum | Overexpression of IolT1 and glk | 141.00 |
[ |
Escherichia coli |
Plasmid with aro | 87.00 |
[ |
Escherichia coli | ΔaroKΔaroL | 7.00 |
[ |
Bacillus subtilis | Overexpression of aroA and aroD | 3.20 |
[ |
Bacillus megaterium | ΔaroK | 6.00 |
[ |
Escherichia coli | ΔaroLΔptsHIcrrΔydiB; Overexpression of tktA, glk, aroE, and aroB | 1.85 |
[ |
Escherichia coli | ΔaroKΔaroL; Overexpression of aroB, aroG, ppsA, and tktA | 5.33 |
[ |
Escherichia coli | ΔtyrRΔptsGΔpykAΔshiAΔaroLΔaroK; Overexpression of aroB, aroD, aroG, aroF, ppsA, galP, aroE, and tktA | 101.00 |
[ |
Escherichia coli |
Overexpression of aro | 84.00 |
[ |
Corynebacterium glutamicum | Overexpression of aroG, aroB, and aroE | 13.10 |
[ |
Escherichia coli | Optimization of culture conditions | 2.66 |
[ |
Citrobacter freundii | Optimization of culture conditions | 9.11 |
[ |
Citrobacter freundii | Optimization of culture conditions | 16.78 |
[ |
Citrobacter freundii | Optimization of culture conditions | 12.76 |
[ |
Escherichia coli | Bifunctional optogenetic switch | 76.00 |
[ |
Escherichia coli | Biomolecular switches | 12.63 |
[ |
Escherichia coli | Asymmetry distribution-based synthetic consortium (ADSC) | 82.50 |
[ |

图8 莽草酸生产菌株构建与优化策略总结
Figure 8 Summary of the strategies used for construction and optimization of shikimic acid production strains.
展望未来,对莽草酸的生物合成研究仍有很大的提升空间。首先,需要进一步加强对莽草酸合成途径的代谢调控研究,以优化生产流程、提升合成效率。其次,利用合成生物学技术结合基因编辑工具(如CRISPR-Cas9),可以对代谢途径进行精确改造,为莽草酸的工业化生产开辟新的途径。此外,深入探讨莽草酸的潜在生物活性及功能特性,将为新型药物和生物农药的开发提供重要支持。总体来看,莽草酸的生物合成研究面临广阔的前景和挑战,未来的研究将推动其在生命科学与应用科学领域的进一步发展。
作者贡献声明
夏煌慧:负责文章总体框架的确定、数据的收集与整理,并负责论文的初稿撰写与修订工作;崔树梅:负责研究设计、数据收集;黄建忠:负责写作指导。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
ETC Group. Plant-derived ingredients and synthetic biology[EB/OL]. Case study: star anise. [2012-07-02]. https://www.etcgroup.org/content/case-study-star-anise. [百度学术]
POLLACK A. Is bird flu drug really so vexing? Debating the difficulty of Tamiflu[EB/OL]. New York Times. [2005]. http://www.nytimes.com/2005/11/05/business/05tamiflu.html. [百度学术]
ZHANG XT, YOSHIHARA K, MIYATA N, HATA T, ALTAISAIKHAN A, TAKAKURA S, ASANO Y, IZUNO S, SUDO N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice[J]. Physiology & Behavior, 2022, 244: 113653. [百度学术]
马怡, 孙建宁, 徐秋萍, 郭亚建. 莽草酸对血小板聚集和凝血的抑制作用[J]. 药学学报, 2000, 35(1): 1-3. [百度学术]
MA Y, SUN JN, XU QP, GUO YJ. Inhibitory effects of shikimic acid on platelet aggragation and blood coagulation[J]. Acta Pharmaceutica Sinica, 2000, 35(1): 1-3 (in Chinese). [百度学术]
林军, 胡海峰, 胡又佳, 朱宝泉. 莽草酸及其代谢产物在医药工业中的应用[J]. 药物生物技术, 2011, 18(5): 461-465. [百度学术]
LIN J, HU HF, HU YJ, ZHU BQ. The application of shikimic acid and its metabolites in the pharmaceutical industry[J]. Pharmaceutical Biotechnology, 2011, 18(5): 461-465 (in Chinese). [百度学术]
KRÖMER JO, NUNEZ-BERNAL D, AVERESCH NJH, HAMPE J, VARELA J, VARELA C. Production of aromatics in Saccharomyces cerevisiae: a feasibility study[J]. Journal of Biotechnology, 2013, 163(2): 184-193. [百度学术]
JIANG SD, SINGH G, BOAM DJ, COGGINS JR. Synthesis of 3-deoxy-3,3-difluoroshikimic acid and its 4-epimer from quinic acid[J]. Tetrahedron: Asymmetry, 1999, 10(21): 4087-4090. [百度学术]
JIANG M, ZHANG HR. Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli[J]. Current Opinion in Biotechnology, 2016, 42: 1-6. [百度学术]
ENRICH LB, SCHEUERMANN ML, MOHADJER A, MATTHIAS KR, ELLER CF, NEWMAN MS, FUJINAKA M, POON T. Liquidambar styraciflua: a renewable source of shikimic acid[J]. Tetrahedron Letters, 2008, 49(16): 2503-2505. [百度学术]
鄢芳清, 韩亚昆, 李娟, 李燕军, 徐庆阳, 陈宁, 谢希贤. 大肠杆菌芳香族氨基酸代谢工程研究进展[J]. 生物加工过程, 2017, 15(5): 32-39, 85. [百度学术]
YAN FQ, HAN YK, LI J, LI YJ, XU QY, CHEN N, XIE XX. Metabolic engineering of aromatic amino acids in Escherichia coli[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(5): 32-39, 85 (in Chinese). [百度学术]
REARDON S. How synthetic biologists are building better biofactories[J]. Nature, 2024, 628(8006): 224-226. [百度学术]
DELL KA, FROST JW. Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis[J]. Journal of the American Chemical Society, 1993, 115: 11581-9. [百度学术]
WU FL, CAO P, SONG GT, CHEN WJ, WANG QH. Expanding the repertoire of aromatic chemicals by microbial production[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 2804-2816. [百度学术]
LI L, TU R, SONG G, LI L, TU R, SONG G, CHEN W, LI L, WANG L, WANG Q. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening[J]. ACS Synthetic Biology, 2019, 8: 297-306. [百度学术]
RODRIGUEZ A, MARTÍNEZ JA, FLORES N, ESCALANTE A, GOSSET G, BOLIVAR F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds[J]. Microbial Cell Factories, 2014, 13(1): 126. [百度学术]
KMIETOWICZ Z. Tamiflu reduces complications of flu, new review finds[J]. BMJ, 2015, 350: h537. [百度学术]
GHOSH S, CHISTI Y, BANERJEE UC. Production of shikimic acid[J]. Biotechnology Advances, 2012, 30(6): 1425-1431. [百度学术]
RAWAT G, TRIPATHI P, SAXENA RK. Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends[J]. Applied Microbiology and Biotechnology, 2013, 97(10): 4277-4287. [百度学术]
BOCHKOV DV, SYSOLYATIN SV, KALASHNIKOV AI, SURMACHEVA IA. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources[J]. Journal of Chemical Biology, 2012, 5(1): 5-17. [百度学术]
RAWAT G, TRIPATHI P, JAHAN F, SAXENA RK. A natural isolate producing shikimic acid: isolation, identification, and culture condition optimization[J]. Applied Biochemistry and Biotechnology, 2013, 169(8): 2290-2302. [百度学术]
NIE LD, SHI XX, KO KH, LU WD. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (-)-shikimic acid[J]. The Journal of Organic Chemistry, 2009, 74(10): 3970-3973. [百度学术]
黄晓婷, 杨冬业, 郑楚, 范志敏, 刘漫君, 韦桂宁. 八角莽草酸的抗动脉粥样硬化作用机制研究[J]. 中国实验方剂学杂志, 2014, 20(11): 126-130. [百度学术]
HUANG XT, YANG DY, ZHENG C, FAN ZM, LIU MJ, WEI GN. Mechanism of anti-atherogenesis of shikimic acid from Illicium verum[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2014, 20(11): 126-130 (in Chinese). [百度学术]
MA Y, XU QP, SUN JN, BAI LM, GUO YJ, NIU JZ. Antagonistic effects of shikimic acid against focal cerebral ischemia injury in rats subjected to middle cerebral artery thrombosis[J]. Acta Pharmacologica Sinica, 1999, 20(8): 701-704. [百度学术]
QUIÑONES N, HERNÁNDEZ S, ESPINOZA CATALÁN L, VILLENA J, BRITO I, CABRERA AR, SALAS CO, CUELLAR MA. (-)-shikimic acid as a chiral building block for the synthesis of new cytotoxic 6-aza-analogues of angucyclinones[J]. Molecules, 2018, 23(6): 1422. [百度学术]
林洁, 兰琪欣, 韦应芳, 廖兰艳, 韦国锋. 八角茴香药用成分的提取及其镇痛作用的实验研究[J]. 右江民族医学院学报, 2008, 30(2): 195-196. [百度学术]
LIN J, LAN QX, WEI YF, LIAO LY, WEI GF. An experimental study of the extraction procedure of medicinal components from star anise and its analgesic function[J]. Journal of Youjiang Medical College for Nationalities, 2008, 30(2): 195-196 (in Chinese). [百度学术]
AL-MALKI AL. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats[J]. International Journal of Biological Macromolecules, 2019, 122: 1212-1216. [百度学术]
ALDESUQUY H, IBRAHIM AH. The role of shikimic acid in regulation of growth, transpiration, pigmentation, photosynthetic activity and productivity of Vigna sinensis plants[J]. Phyton-annales Rei Botanicae, 2000, 40(2): 277-292. [百度学术]
MENG XW, LIU ZG, DAI L, ZHAO WQ, WANG JR, WANG LL, CUI YP, LI Y, CUI YS, ZHANG Y, WANG LY, YU FJ, ZHAO J, LIU MJ. Shikimic acid accelerates phase change and flowering in Chinese jujube[J]. Horticultural Plant Journal, 2024, 10(2): 413-424. [百度学术]
SINERGA. Verochic[EB/OL]. [2022-07]. https://www.ulprospector.com/en/na/PersonalCare/Detail/12615/371026/Verochic. [百度学术]
ARMESTO N, FERRERO M, FERNÁNDEZ S, GOTOR V. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives[J]. The Journal of Organic Chemistry, 2003, 68(14): 5784-5787. [百度学术]
NINOMIYA M, HARA Y, KUBO Y, YAMASHITA T, KATAGIRI C. Tracking of cutaneous vascular structural changes post-UV irradiation using optical coherence tomography angiography[J]. Photodermatology, Photoimmunology & Photomedicine, 2020, 36(3): 226-232. [百度学术]
PANICH U, SITTITHUMCHAREE G, RATHVIBOON N, JIRAWATNOTAI S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging[J]. Stem Cells International, 2016, 2016: 7370642. [百度学术]
MARTÍNEZ-GUTIÉRREZ A, FERNÁNDEZ-DURAN I, MARAZUELA-DUQUE A, SIMONET NG, YOUSEF I, MARTÍNEZ-ROVIRA I, MARTÍNEZ-HOYOS J, VAQUERO A. Shikimic acid protects skin cells from UV-induced senescence through activation of the NA
CIANCAGLIO WA, MERCURIO DG, CAMPOS PMBGM. Shikimic acid: a potential active principle for skin exfoliation[J]. Surgical & Cosmetic Dermatology, 2014, 6: 239-247. [百度学术]
BATORY M, ROTSZTEJN H. Shikimic acid in the light of current knowledge[J]. Journal of Cosmetic Dermatology, 2022, 21(2): 501-505. [百度学术]
罗威, 高冬丽. 莽草酸含量测定方法综述[J]. 现代食品, 2020, 26(10): 59-63. [百度学术]
LUO W, GAO DL. A review of the quantitative methods of shikimic acid content[J]. Modern Food, 2020, 26(10): 59-63 (in Chinese). [百度学术]
MARDONES C, HITSCHFELD A, CONTRERAS A, LEPE K, GUTIÉRREZ L, von BAER D. Comparison of shikimic acid determination by capillary zone electrophoresis with direct and indirect detection with liquid chromatography for varietal differentiation of red wines[J]. Journal of Chromatography A, 2005, 1085(2): 285-292. [百度学术]
邱米, 马锦林, 张日清, 陆顺忠, 李娜. 莽草酸的研究综述[J]. 广西林业科学, 2009, 38(1): 45-47. [百度学术]
QIU M, MA JL, ZHANG RQ, LU SZ, LI N. The progress in research on shikimic acid[J]. Guangxi Forestry Science, 2009, 38(1): 45-47 (in Chinese). [百度学术]
中国报告大厅. 2023年八角种植规模呈现高速增长态势:八角茴油需求逐渐增加[EB/OL]. [2023-02-10]. https://m.chinabgao.com/info/1243936.html. [百度学术]
WHITING GC. Occurrence of shikimic acid in gooseberry fruits[J]. Nature, 1957, 179: 531. [百度学术]
AVULA B, WANG YH, SMILLIE TJ, KHAN IA. Determination of shikimic acid in fruits of Illicium species and various other plant samples by LC-UV and LC-ESI-MS[J]. Chromatographia, 2009, 69(3): 307-314. [百度学术]
何新华, 刘玲, 刘兴国, 刘兆普, 赵耕毛, 李洪燕. 八角茴香中莽草酸提取和纯化工艺的研究[J]. 天然产物研究与开发, 2008, 20(5): 914-917. [百度学术]
HE XH, LIU L, LIU XG, LIU ZP, ZHAO GM, LI HY. Research on the extraction and purification of shikimic acid from Illicium verum Hook.F[J]. Natural Product Research and Development, 2008, 20(5): 914-917 (in Chinese). [百度学术]
廖洪利, 臧志和, 宋丽, 陈定军, 王锋. 八角茴香中莽草酸的提取[J]. 成都医学院学报, 2006, 1(2): 130-131. [百度学术]
LIAO HL, ZANG ZH, SONG L, CHEN DJ, WANG F. Extraction of shikimic acid from lllicium Verum[J]. Journal of Chengdu Medical College, 2006, 1(2): 130-131 (in Chinese). [百度学术]
MAGANO J. Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza[J]. Chemical Reviews, 2009, 109(9): 4398-4438. [百度学术]
VINATORU M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs[J]. Ultrasonics Sonochemistry, 2001, 8(3): 303-313. [百度学术]
刘洁, 李秋庭, 陆顺忠, 杨静, 李娜. 超声波提取八角莽草酸工艺研究[J]. 粮油食品科技, 2009, 17(5): 47-50. [百度学术]
LIU J, LI QT, LU SZ, YANG J, LI N. Research on extracting shikimic acid from Illicium verum Hook.f.by ultrasonic extraction[J]. Science and Technology of Cereals, Oils and Foods, 2009, 17(5): 47-50 (in Chinese). [百度学术]
JIANG SD, SINGH G. Chemical synthesis of shikimic acid and its analogues[J]. Tetrahedron, 1998, 54(19): 4697-4753. [百度学术]
JEFFREY JS. Industrial applications of chemical process synthesis[M]. Pennsylvania: Academic Press, 1996: 1. [百度学术]
刘相奎, 王强, 袁哲东. (-)-莽草酸合成路线图解[J]. 中国医药工业杂志, 2006, 37(1): 70-72. [百度学术]
LIU XK, WANG Q, YUAN ZD. Graphical synthetic routes of (-)-shikimic acid[J]. Chinese Journal of Pharmaceuticals, 2006, 37(1): 70-72 (in Chinese). [百度学术]
BOHM BA. Shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid)[J]. Chemical Reviews, 1965, 65(4): 435-466. [百度学术]
JIANG SD, McCULLOUGH KJ, MEKKI B, SINGH G, WIGHTMAN RH. Enantiospecific synthesis of (-)-5-epi-shikimic acid and (-)-shikimic acid[J]. Journal of the Chemical Society-perkin Transactions 1, 1997 (12): 1805-1814. [百度学术]
ALVES C, BARROS MT, MAYCOCK CD, VENTURA MR. An efficient transformation of quinic acid to shikimic acid derivatives[J]. Tetrahedron, 1999, 55(28): 8443-8456. [百度学术]
CHOTANI G, DODGE T, HSU A, KUMAR M, LaDUCA R, TRIMBUR D, WEYLER W, SANFORD K. The commercial production of chemicals using pathway engineering[J]. Biochimica et Biophysica Acta, 2000, 1543(2): 434-455. [百度学术]
SAXENA RK, ANAND P, SARAN S, ISAR J. Microbial production of 1,3-propanediol: recent developments and emerging opportunities[J]. Biotechnology Advances, 2009, 27(6): 895-913. [百度学术]
RANGACHARI S, FRIEDMAN TC, HARTMANN G, WEISENFELD RB. Processes for producing and recovering shikimic acid: US8344178[P]. 2013-01-01. [百度学术]
SONG H, LEE SY. Production of succinic acid by bacterial fermentation[J]. Enzyme and Microbial Technology, 2006, 39(3): 352-361. [百度学术]
ESCALANTE A, CALDERÓN R, VALDIVIA A, de ANDA R, HERNÁNDEZ G, RAMÍREZ OT, GOSSET G, BOLÍVAR F. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Microbial Cell Factories, 2010, 9: 21. [百度学术]
KRÄMER M, BONGAERTS J, BOVENBERG R, KREMER S, MÜLLER U, ORF S, WUBBOLTS M, RAEVEN L. Metabolic engineering for microbial production of shikimic acid[J]. Metabolic Engineering, 2003, 5(4): 277-283. [百度学术]
FLORES N, XIAO J, BERRY A, BOLIVAR F, VALLE F. Pathway engineering for the production of aromatic compounds in Escherichia coli[J]. Nature Biotechnology, 1996, 14(5): 620-623. [百度学术]
BONGAERTS J, KRÄMER M, MÜLLER U, RAEVEN L, WUBBOLTS M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds[J]. Metabolic Engineering, 2001, 3(4): 289-300. [百度学术]
LÜTKE-EVERSLOH T, STEPHANOPOULOS G. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: Identification of enzymatic bottlenecks by systematic gene overexpression[J]. Metabolic Engineering, 2008, 10(2): 69-77. [百度学术]
PFLEGER BF, PITERA DJ, SMOLKE CD, KEASLING JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature Biotechnology, 2006, 24(8): 1027-1032. [百度学术]
YUAN JF, CHING CB. Combinatorial engineering of mevalonate pathway for improved Amorpha-4,11-diene production in budding yeast[J]. Biotechnology and Bioengineering, 2014, 111(3): 608-617. [百度学术]
WU G, YAN Q, JONES JA, TANG YJ, FONG SS, KOFFAS MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications[J]. Trends in Biotechnology, 2016, 34(8): 652-664. [百度学术]
FUNG DKC, LAU WY, CHAN WT, YAN AX. Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis[J]. Journal of Bacteriology, 2013, 195(20): 4556-4568. [百度学术]
刘倩钰, 吴丽雯, 牛建军, 赵西林. 细菌磷酸转移酶系统(PTS)的组成与功能研究进展[J]. 微生物学通报, 2020, 47(7): 2266-2277. [百度学术]
LIU QY, WU LW, NIU JJ, ZHAO XL. Research progress of the composition and function of bacterial phosphotransferase system[J]. Microbiology China, 2020, 47(7): 2266-2277 (in Chinese). [百度学术]
KOGURE T, INUI M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products[J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8685-8705. [百度学术]
YI J, DRATHS KM, LI K, FROST JW. Altered glucose transport and shikimate pathway product yields in E. coli[J]. Biotechnology Progress, 2003, 19(5): 1450-1459. [百度学术]
GARRIDO-PERTIERRA A, COOPER RA. Evidence for two dinstinct pyruvate kinase genes in Escherichia coli K-12[J]. FEBS Letters, 1983, 162(2): 420-422. [百度学术]
AL ZAID SIDDIQUEE K, ARAUZO-BRAVO MJ, SHIMIZU K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli[J]. FEMS Microbiology Letters, 2004, 235(1): 25-33. [百度学术]
BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. [百度学术]
KOGURE T, KUBOTA T, SUDA M, HIRAGA K, INUI M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction[J]. Metabolic Engineering, 2016, 38: 204-216. [百度学术]
CHOI SS, SEO SY, PARK SO, LEE HN, SONG JS, KIM JY, PARK JH, KIM S, LEE SJ, CHUN GT, KIM ES. Cell factory design and culture process optimization for dehydroshikimate biosynthesis in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 241. [百度学术]
CARTHEW RW. Gene regulation and cellular metabolism: an essential partnership[J]. Trends in Genetics, 2021, 37(4): 389-400. [百度学术]
程瑶, 赵千婧, 王佳, 孙新晓, 申晓林, 袁其朋. 化合物代谢新途径构建及微生物糖代谢网络改造的研究进展[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 78-91. [百度学术]
CHENG Y, ZHAO QJ, WANG J, SUN XX, SHEN XL, YUAN QP. Advances in the construction of new pathways of chemical compound metabolism and modification of microbial sugar metabolism network[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 78-91 (in Chinese). [百度学术]
PITTARD J, YANG J. Biosynthesis of the aromatic amino acids[J]. EcoSal Plus, 2008. DOI:10.1128/ecosalplus.3.6.1.8. [百度学术]
RODRIGUEZ A, MARTÍNEZ JA, BÁEZ-VIVEROS JL, FLORES N, HERNÁNDEZ-CHÁVEZ G, RAMÍREZ OT, GOSSET G, BOLIVAR F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF[J]. Microbial Cell Factories, 2013, 12: 86. [百度学术]
LIU DF, AI GM, ZHENG QX, LIU C, JIANG CY, LIU LX, ZHANG B, LIU YM, YANG C, LIU SJ. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains[J]. Microbial Cell Factories, 2014, 13(1): 40. [百度学术]
GHOSH S, MOHAN U, BANERJEE UC. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium[J]. World Journal of Microbiology & Biotechnology, 2016, 32(8): 127. [百度学术]
CHEN K, DOU J, TANG SR, YANG YS, WANG H, FANG HQ, ZHOU CL. Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli[J]. Bioresource Technology, 2012, 119: 141-147. [百度学术]
LEE MY, HUNG WP, TSAI SH. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol[J]. World Journal of Microbiology & Biotechnology, 2017, 33(2): 25. [百度学术]
吴伟斌. 高产L-苯丙氨酸大肠杆菌代谢工程育种及其发酵工艺研究[D]. 福州: 福建师范大学博士学位论文, 2018. [百度学术]
WU WB. Study on metabolic engineering breeding and fermentation technology of high-yield L-phenylalanine Escherichia coli[D]. Fuzhou: Doctoral Dissertation of Fujian Normal University, 2018 (in Chinese). [百度学术]
LEE HN, SEO SY, KIM HJ, PARK JH, PARK E, CHOI SS, LEE SJ, KIM ES. Artificial cell factory design for shikimate production in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2021, 48(9/10): kuab043. [百度学术]
CHANDRAN SS, YI J, DRATHS KM, von DAENIKEN R, WEBER W, FROST JW. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid[J]. Biotechnology Progress, 2003, 19(3): 808-814. [百度学术]
MUNDHADA H, SEOANE JM, SCHNEIDER K, KOZA A, CHRISTENSEN HB, KLEIN T, PHANEUF PV, HERRGARD M, FEIST AM, NIELSEN AT. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution[J]. Metabolic Engineering, 2017, 39: 141-150. [百度学术]
LIU XL, LIN J, HU HF, ZHOU B, ZHU BQ. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields[J]. Enzyme and Microbial Technology, 2016, 82: 96-104. [百度学术]
MARTÍNEZ JA, RODRIGUEZ A, MORENO F, FLORES N, LARA AR, RAMÍREZ OT, GOSSET G, BOLIVAR F. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production[J]. BMC Systems Biology, 2018, 12(1): 102. [百度学术]
江晶洁, 刘涛, 林双君. 基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J]. 生命科学, 2019, 31(5): 430-448. [百度学术]
JIANG JJ, LIU T, LIN SJ. Research progress on the biosynthesis of aromatic compounds by microorganisms[J]. Chinese Bulletin of Life Sciences, 2019, 31(5): 430-448 (in Chinese). [百度学术]
KUBOTA T, TANAKA Y, TAKEMOTO N, WATANABE A, HIRAGA K, INUI M, YUKAWA H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point[J]. Molecular Microbiology, 2014, 92(2): 356-368. [百度学术]
SATO N, KISHIDA M, NAKANO M, HIRATA Y, TANAKA T. Metabolic engineering of shikimic acid-producing Corynebacterium glutamicum from glucose and cellobiose retaining its phosphotransferase system function and pyruvate kinase activities[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 569406. [百度学术]
PAMBOUKIAN CRD, FACCIOTTI MCR. Production of the antitumoral retamycin during continuous fermentations of Streptomyces olindensis[J]. Process Biochemistry, 2004, 39(12): 2249-2255. [百度学术]
SANCHEZ S, DEMAIN AL. Metabolic regulation of fermentation processes[J]. Enzyme and Microbial Technology, 2002, 31(7): 895-906. [百度学术]
CHEN LP, WANG CL, SU JY. Understanding the effect of different glucose concentrations in the oligotrophic bacterium Bacillus subtilis BS-G1 through transcriptomics analysis[J]. Microorganisms, 2023, 11(10): 2401. [百度学术]
赵现方, 王艳婕, 武忠伟, 王振河, 陈冰冰. 莽草酸发酵培养基的最佳碳氮源筛选[J]. 河南科技学院学报(自然科学版), 2011, 39(6): 16-18. [百度学术]
ZHAO XF, WANG YJ, WU ZW, WANG ZH, CHEN BB. Screening of the optimal carbon and nitrogen source of the medium for shikimic acid fermentation[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2011, 39(6): 16-18 (in Chinese). [百度学术]
隋雪. 大肠杆菌中戊二酸的生物合成及其发酵优化[D]. 无锡: 江南大学硕士学位论文, 2020. [百度学术]
SUI X. Biosynthesis and fermentation optimization of glutaric acid in Escherichia coli[D]. Wuxi: Master’s Thesis of Jiangnan University, 2020 (in Chinese). [百度学术]
朱文龙. 甘露糖: 6: 磷酸的合成工艺研究[D]. 北京: 北京化工大学硕士学位论文, 2020. [百度学术]
ZHU WL. Study on synthesis technology of mannose-6-phosphate[D]. Beijing: Master’s Thesis of Beijing University of Chemical Technology, 2020 (in Chinese). [百度学术]
郭谦. 代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学硕士学位论文, 2014. [百度学术]
GUO Q. Metabolic engineering transformation of Escherichia coli to produce L-methionine[D]. Wuxi: Master’s Thesis of Jiangnan University, 2014 (in Chinese). [百度学术]
孙家凯, 吴晓娇, 史建明, 徐庆阳, 谢希贤, 陈宁. pH值对大肠杆菌发酵异亮氨酸的影响[J]. 食品与发酵工业, 2012, 38(3): 12-16. [百度学术]
SUN JK, WU XJ, SHI JM, XU QY, XIE XX, CHEN N. Effect of pH on the process of Escherichia coli L-isoleucine fermentation[J]. Food and Fermentation Industries, 2012, 38(3): 12-16 (in Chinese). [百度学术]
宗媛, 伊进行, 王雪慧, 王静, 王晓超, 陈宁, 王小楠. 代谢工程改造大肠杆菌合成莽草酸及培养基优化[J]. 食品与发酵工业, 2024. https://doi.org/10.13995/j.cnki.11-1802/ts.038735. [百度学术]
ZONG Y, YI JH, WANG XH, WANG J, WANG XC, CHEN N, WANG XN. Metabolic engineering for the synthesis of shikimic acid in Escherichia coli and optimization of culture medium. Food and Fermentation Industries, 2024. https://doi.org/10.13995/j.cnki.11-1802/ts.038735(in Chinese). [百度学术]
TRIPATHI P, RAWAT G, YADAV S, SAXENA RK. Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route[J]. Bioprocess and Biosystems Engineering, 2013, 36(11): 1665-1673. [百度学术]
RAWAT G, TRIPATHI P, YADAV S, SAXENA RK. An interactive study of influential parameters for shikimic acid production using statistical approach, scale up and its inhibitory action on different lipases[J]. Bioresource Technology, 2013, 144: 675-679. [百度学术]
TRIPATHI P, RAWAT G, YADAV S, SAXENA RK. Shikimic acid, a base compound for the formulation of swine/avian flu drug: statistical optimization, fed-batch and scale up studies along with its application as an antibacterial agent[J]. Antonie Van Leeuwenhoek, 2015, 107(2): 419-431. [百度学术]
徐柳杰. 发酵液中莽草酸的分离纯化工艺研究[D]. 福州: 福建师范大学硕士学位论文, 2021. [百度学术]
XU LJ. Study on separation and purification technology of shikimic acid in fermentation broth[D]. Fuzhou: Master’s Thesis of Fujian Normal University, 2021 (in Chinese). [百度学术]
PAL D, TRIPATHY RK, TEJA MS, KUMAR M, BANERJEE UC, PANDE AH. Antibiotic-free expression system for the production of human interferon-beta protein[J]. 3 Biotech, 2018, 8(1): 36. [百度学术]
LUKE JM, VINCENT JM, DU SX, GERDEMANN U, LEEN AM, WHALEN RG, HODGSON CP, WILLIAMS JA. Improved antibiotic-free plasmid vector design by incorporation of transient expression enhancers[J]. Gene Therapy, 2011, 18(4): 334-343. [百度学术]
KO YS, KIM JW, LEE JA, HAN T, KIM GB, PARK JE, LEE SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 49(14): 4615-4636. [百度学术]
ZHANG FZ, KEASLING J. Biosensors and their applications in microbial metabolic engineering[J]. Trends in Microbiology, 2011, 19(7): 323-329. [百度学术]
CHEUNG J, HENDRICKSON WA. Sensor domains of two-component regulatory systems[J]. Current Opinion in Microbiology, 2010, 13(2): 116-123. [百度学术]
LIM WA. Designing customized cell signalling circuits[J]. Nature Reviews Molecular Cell Biology, 2010, 11(6): 393-403. [百度学术]
LIENERT F, LOHMUELLER JJ, GARG A, SILVER PA. Synthetic biology in mammalian cells: next generation research tools and therapeutics[J]. Nature Reviews Molecular Cell Biology, 2014, 15(2): 95-107. [百度学术]
ROGERS JK, CHURCH GM. Genetically encoded sensors enable real-time observation of metabolite production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2388-2393. [百度学术]
LIU C, ZHANG B, LIU YM, YANG KQ, LIU SJ. New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum[J]. ACS Synthetic Biology, 2018, 7(2): 591-601. [百度学术]
STEIN V, ALEXANDROV K. Synthetic protein switches: design principles and applications[J]. Trends in Biotechnology, 2015, 33(2): 101-110. [百度学术]
KOMERA I, GAO C, GUO L, HU GP, CHEN XL, LIU LM. Bifunctional optogenetic switch for improving shikimic acid production in E. coli[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 13. [百度学术]
GAO C, HOU JS, XU P, GUO L, CHEN XL, HU GP, YE C, EDWARDS H, CHEN J, CHEN W, LIU LM. Programmable biomolecular switches for rewiring flux in Escherichia coli[J]. Nature Communications, 2019, 10(1): 3751. [百度学术]
DING Q, LI ZD, GUO L, SONG W, WU J, CHEN XL, LIU LM, GAO C. Engineering Escherichia coli asymmetry distribution-based synthetic consortium for shikimate production[J]. Biotechnology and Bioengineering, 2022, 119(11): 3230-3240. [百度学术]