摘要
目的
探究VraSR通过CidA-LrgAB系统调控表皮葡萄球菌的生物学功能。
方法
构建重组质粒pKOR1-ΔlrgAB,并将其转化至表皮葡萄球菌SE1457 ∆vraSR突变株中。通过同源重组技术,在∆vraSR突变株上进一步敲除lrgAB基因。利用PCR、RT-PCR和测序技术鉴定表皮葡萄球菌ΔvraSR-lrgAB疑似突变株,并检测其生长特性、药物敏感性、自溶能力以及生物被膜形成能力。
结果
成功构建了表皮葡萄球菌∆vraSR-lrgAB突变株。与表皮葡萄球菌SE1457、ΔvraSR和ΔlrgAB菌株相比,∆vraSR-lrgAB突变株生长迟缓,特别是在25 ℃和40 ℃下尤为明显(P<0.001)。该突变株的药物敏感性增强(P<0.01),自溶能力显著增强(P<0.001),生物被膜形成能力降低(P<0.01)。
结论
VraSR可能部分通过LrgAB调控表皮葡萄球菌的生长、药物敏感性、自溶能力和生物被膜的形成。
表皮葡萄球菌(Staphylococcus epidermidis)是一种常见于人类皮肤表面的机会性病原菌,能在临床常用的医疗器械表层形成具有黏附性的生物被
双组分信号转导系统(two-component signal transduction system, TCS
葡萄球菌CidA-LrgAB系统是调节细菌程序性细胞死亡(programmed cell death, PCD)和溶解的关键元件。CidA蛋白在结构上与噬菌体Holin蛋白具有高度相似
Belcheva
1 材料与方法
1.1 材料
1.1.1 主要试剂
TSA培养基、TSB培养基、MH琼脂培养基、20×PBS缓冲液、结晶紫、Triton X-100,北京索莱宝科技有限公司;琼脂糖粉,Biowest公司;Phanta Max Super-Fidelity DNA Polymerase、RNeasy Mini Kit、HiScrip
1.1.2 常规试剂配制
B2培养基(g/L):酵母提取物25.0,葡萄糖5.0,胰蛋白胨粉10.0,K2HPO4 1.0,NaCl 25.0,去离子水定容到1 L;121 ℃灭菌15 min。
0.2% Triton X-100缓冲液(50 mmol/L Tris-HCl,pH 7.2) (g/L):Tris 6.1,去离子水定容到1 L,浓盐酸调节pH至7.2后加入2 mL Triton X-100,121 ℃灭菌15 min。
Atc (mg/mL):脱水四环素干粉2.5,溶解于1 mL灭菌超纯水,0.22 μm滤膜过滤除菌。终浓度为2.5 mg/mL。Van、Amp、Kan、Cm和Bacitracin终浓度分别为25、50、50、50和50 mg/mL。
1.1.3 菌株和质粒
大肠杆菌(Escherichia coli) DH5α购自生工生物工程(上海)股份有限公司;表皮葡萄球菌SE1457 vraSR敲除突变株(∆vraSR)、altE敲除突变株(∆altE)、icaC敲除突变株(∆icaC)、SE35984、大肠杆菌DC10B、穿梭质粒pKOR1均由本实验室保存。
1.2 lrgAB基因上、下游同源臂PCR扩增
以表皮葡萄球菌SE1457全基因组DNA为扩增模板,利用引物lrgAB-U-attB1-F/lrgAB-U-R (
Primers name | Primer sequences (5′→3′) | Location (bp) | Restriction enzyme | Product size (bp) |
---|---|---|---|---|
Construction of vraSR-lrgAB knockout mutant | ||||
lrgAB-U-attB1-F | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTCTCAATCAGGCACG | 2 046 064-2 046 081 | attB1 | 978 |
lrgAB-U-R | ACTGCTACAACAATAACGCCACGAGATGCGTTTGTTCC | 2 047 035-2 047 052 | 978 | |
lrgAB-D-F | TTGGAACAAACGCATCTCGTGGCGTTATTGTTGTAGCA | 2 048 137-2 048 154 | 1 072 | |
lrgAB-D-attB2-R | GGGGACCACTTTGTACAAGAAAGCTGGGTTATGAAGCGGATGGAAAA | 2 049 145-2 049 162 | attB2 | 1 072 |
vraSR-U-F | TTCAACACGGTATAGGAG | 1 486 676-1 486 693 | 2 359 | |
vraSR-D-R | TTACTAGGGTCCTTTGCA | 1 484 335-1 484 352 | 2 359 | |
lrgAB-U-F | ATGAAACGACCGAAACAC | 2 046 675-2 046 692 | 886 | |
lrgAB-D-R | AAAGGTATGGGAATGACG | 2 048 687-2 048 704 | 886 | |
Identification of vraSR-lrgAB knockout mutant by RT-PCR | ||||
RT-gyrB-F | CCTACAGATGGATTCTCAT | 2 610 611-2 610 629 | 148 | |
RT-gyrB-R | TAACAGCAGTCGTATCAA | 2 610 741-2 610 758 | 148 | |
RT-vraSR-F | GTTAAGGCACCATTGAATAAG | 1 485 382-1 485 402 | 133 | |
RT-vraSR-R | TAACAGCAGTCGTATCAA | 1 485 270-1 485 293 | 133 | |
RT-lrgAB-F | TCAACAAGCATTAACGAT | 2 047 101-2 047 118 | 194 | |
RT-lrgAB-R | GTACGAATAGGAATCCAATA | 2 047 275-2 047 294 | 194 |
F:正向引物;R:反向引物;下划线:attB位点。
F: Forward primer; R: Reverse primer; Underlines: attB sites.
以US和DS为模板,重叠PCR扩增US-DS片段,鉴定成功后回收纯
1.3 同源重组质粒pKOR1-ΔlrgAB的构建
BP反应体
1.4 表皮葡萄球菌ΔvraSR突变株感受态细胞制备
选取单个葡萄球菌菌落,振荡培养至对数生长期(OD600值为0.5),冰浴10 min。随后,在4 ℃、5 000 r/min离心10 min,弃去上清液。使用预冷的、与离心前相同体积的0.5 mol/L蔗糖溶液轻柔地重悬细胞,并在冰上静置15 min。之后,再次在4 ℃、5 000 r/min离心10 min,弃去上清液,此步重复2次。向洗涤后的细胞中加入1 mL预冷的0.5 mol/L蔗糖溶液,缓慢重悬细胞,在冰上静置10 min后,分装成每支100 μL,并置于-80 ℃保存备用。
1.5 重组质粒pKOR1-ΔlrgAB电击转化、突变株的筛选
重组质粒pKOR1-∆lrgAB热激转化至大肠杆菌DC10B中进行修饰,抽提质粒并采用电击转化
挑取阳性克隆转种于5 mL TSB培养基(含Cm 10 μg/mL)上,43 ℃培养过夜。以1:200的比例转接到5 mL新鲜的TSB培养基中,在30 ℃、200 r/min振荡培养过夜。用纯水1:10 000的比例稀释后,取100 μL稀释液均匀涂布于TSA平板(含Atc 50 ng/mL)上,并在30 ℃、200 r/min培养过夜。在无抗生素的TSA平板上生长,但在含有Cm的TSA平板上不生长的菌落,初步判定为ΔvraSR-lrgAB疑似突变株。
1.6 表皮葡萄球菌ΔlrgAB-vraSR突变株的鉴定
提取∆vraSR-lrgAB疑似突变株DNA,利用引物vraSR-U-F/vraSR-D-R和lrgAB-U-F/lrgAB-D-R进行PCR检测,以野生株SE1457作为对照。利用RNeasy Mini Kit提取SE1457及其同源性突变株的RNA,用HiScrip
1.7 表皮葡萄球菌生长曲线测定
将过夜培养的细菌用PBS调整至OD600值为1.0,用TSB培养基1:200稀释后加入96孔培养板(200 μL/孔,3复孔),置于微生物生长曲线检测仪检测。分别于25、37、40 ℃条件下200 r/min振荡培养12 h,每隔1 h检测1次吸光度(OD600),实验重复3次。
1.8 表皮葡萄球菌药物敏感性检测
依据美国临床和实验室标准协会(Clinical and Laboratory Standards Institute, CLSI)指导原
1.9 表皮葡萄球菌自溶能力测定
表皮葡萄球菌菌株的自溶试验参照Brunskill
1.10 表皮葡萄球菌生物被膜形成半定量检测
通过半定量平板法测定表皮葡萄球菌菌株在体外形成生物膜的能
1.11 统计分析
生长曲线的测定、药物敏感性实验、自溶实验以及生物被膜形成实验的数据均使用GraphPad Prism 8.0软件进行统计学分析处理。误差线表示3次重复实验结果的标准误差,其中P值于评估数据的统计学显著性。
2 结果与分析
2.1 SE1457lrgAB因US-DS同源臂PCR扩增
以SE1457基因组DNA为模板,lrgAB-U-attB1-F/lrgAB-U-R为引物获得978 bp PCR片段(US);lrgAB-D-F/lrgAB-D-attB2-R为引物获得1 072 bp PCR片段(DS) (

图1 表皮葡萄球菌SE1457 lrgAB基因上、下游同源臂PCR扩增。A:lrgAB基因上、下游同源臂PCR扩增。泳道M:DL2000 DNA Marker;泳道1:以蒸馏水为模板(空白对照);泳道2、3:以SE1457为模板,扩增lrgAB基因US片段;泳道4、5:以SE1457为模板,扩增lrgAB基因DS片段。B:lrgAB基因上、下游同源臂片段(attB1-DS-US-attB2) PCR扩增。泳道M:DL7000 DNA Marker;泳道1:以蒸馏水为模板(空白对照);泳道2、3:以US和DS为模板,PCR扩增上、下游同源臂片段。
Figure 1 PCR amplification of the upstream and downstream region flanking lrgAB gene. A: PCR amplification of the upstream and downstream region flanking lrgAB gene. Lane M: DL2000 DNA Marker; Lane 1: Distilled water as template (Blank control); Lanes 2, 3: SE1457 genomic DNA as template to amplify the US fragments flanking lrgAB gene; Lanes 4, 5: SE1457 genomic DNA as template to amplify the DS fragments flanking lrgAB gene. B: PCR amplification of US-DS homology arm fragments (attB1-DS-US-attB2) of the lrgAB gene. Lane M: DL7000 DNA Marker; Lane 1: Distilled water as template (Blank control); Lanes 2, 3: US plus DS as templates, PCR amplification of US-DS fragments.
2.2 重组质粒pKOR1-ΔlrgAB的构建及鉴定
基于表皮葡萄球菌SE1457基因组序列,在lrgAB基因上游和下游区域设计特异性引物,用以构建同源序列,进而在表皮葡萄球菌∆vraSR突变株的基础上进一步敲除lrgAB基因(

图2 重组质粒pKOR1-ΔlrgAB的构建及鉴定。A:表皮葡萄球菌SE1457基因组。US:上游同源臂;DS:下游同源臂。B:重组质粒pKOR1-ΔlrgAB的PCR鉴定。泳道M:DL7000 DNA Marker;泳道1:空白对照;泳道2:以重组质粒DNA为模板的PCR鉴定。C:重组质粒pKOR1-ΔlrgAB酶切鉴定。泳道M:DL15000 DNA Marker;泳道1:空白对照;泳道2:pKOR1-ΔlrgAB重组质粒经Xho I/Kpn I双酶切鉴定;泳道3:pKOR1-ΔlrgAB重组质粒经Kpn I单酶切鉴定。
Figure 2 Construction and verification of recombinant plasmid pKOR1-ΔlrgAB. A: SE1457 genome. US: Up stream; DS: Down stream. B: Identification of the recombinant plasmid pKOR1-ΔlrgAB using PCR. Lane M: DL7000 DNA Marker; Lane 1: Blank control; Lane 2: PCR identification using recombinant plasmid DNA as template. C: Verification of recombinant plasmid pKOR1-ΔlrgAB using restriction enzyme digestion. Lane M: DL15000 DNA Marker; Lane 1: Blank control; Lane 2: The recombinant plasmid pKOR1-ΔlrgAB was digested with Xho I and Kpn I; Lane 3: The recombinant plasmid pKOR1-ΔlrgAB was digested with Kpn I.
2.3 表皮葡萄球菌∆vraSR-lrgAB突变株鉴定
抽提∆vraSR-lrgAB疑似突变株基因组DNA作为模板(SE1457野生株作为对照),使用引物vraSR-U-F/vraSR-D-R进行PCR扩增。∆vraSR-lrgAB疑似突变株可见683 bp条带,而SE1457野生株则呈现2 359 bp的条带,二者相差1 676 bp (vraSR基因缺失) (

图3 表皮葡萄球菌∆vraSR-lrgAB突变株鉴定。A:以vraSR-U-F/vraSR-D-R为引物的PCR鉴定。泳道M:DL7000 DNA Marker;泳道1、2:以SE1457基因组DNA为模板(阳性对照);泳道3:蒸馏水为模板(空白对照);泳道4、5:以∆vraSR-lrgAB突变株基因组DNA为模板。B:以lrgAB-U-F/lrgAB-D-R为引物的PCR鉴定。泳道M:DL7000 DNA Marker;泳道1:以SE1457基因组DNA为模板(阳性对照);泳道2-4:以∆vraSR-lrgAB突变株基因组DNA为模板。C:SE1457ΔvraSR-lrgAB突变株RT-PCR鉴定(测定SE1457、∆vraSR、∆lrgAB及∆vraSR-lrgAB突变株中vraSR基因和lrgAB基因的转录水平,gyrB为管家基因,泳道M:DL1200 DNA Marker。
Figure 3 Verification of ∆vraSR-lrgAB mutant. A: PCR identification of ∆vraSR-lrgAB mutant using vraSR-U-F/vraSR-D-R as the primers. Lane M: DL7000 DNA Marker; Lanes 1, 2: SE1457 genomic DNA as template (Positive control); Lane 3: Distilled water as template (Blank control); Lanes 4, 5: ∆vraSR-lrgAB mutant genomic DNA as template. B: PCR identification of ∆vraSR-lrgAB mutant using lrgAB-U-F/lrgAB-D-R as primers. Lane M: DL7000 DNA Marker; Lane 1: SE1457 genomic DNA as template (Positive control); Lanes 2-4: ∆vraSR-lrgAB mutant genomic DNA as template. C: Verification of ΔvraSR-lrgAB mutant using RT-PCR (Transcriptional levels of vraSR and lrgAB in SE1457, ∆vraSR, ∆lrgAB and ∆vraSR-lrgAB mutant were detected, gyrB was designated as housekeeping gene, Lane M: DL1200 DNA Marker.
RT-PCR检测显示,SE1457野生株可见148、133和137 bp条带,提示SE1457中vraSR和lrgAB基因均表达(gyrB为内参基因),而∆vraSR突变株中未见vraSR基因表达,∆lrgAB突变株则未见lrgAB基因表达,∆vraSR-lrgAB突变株中vraSR和lrgAB均未表达(
2.4 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株生长减慢
在37 ℃的培养条件下,敲除vraSR或lrgAB对表皮葡萄球菌SE1457生长无影响,而ΔvraSR-lrgAB突变株较SE1457、ΔvraSR和ΔlrgAB生长均减慢。SE1457、∆vraSR和ΔlrgAB培养约6 h生长进入对数期(OD600值为1.0),而ΔvraSR-lrgAB突变株则需要8 h。ΔvraSR-lrgAB突变株生长迟缓现象在低温(25 ℃)和高温(40 ℃)条件下更为显著(

图4 表皮葡萄球菌SE1457及其同源性突变株生长曲线。过夜培养物调整OD600至1.0,1:200的比例稀释后加入96孔培养板(3复孔),分别置于25 ℃ (A)、37 ℃ (B)和40 ℃ (C)条件下培养。**:P<0.01;***:P<0.001。
Figure 4 Growth curves of SE1457 and its isogenic mutants. The overnight cultures were adjusted to OD600 of 1.0, diluted 1:200 and added to 96-well culture plates in triplicate. The plates were incubated at 25 ℃ (A), 37 ℃ (B) and 40 ℃ (C), respectively. **: P<0.01; ***: P<0.001.
2.5 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株药物敏感性增强
表皮葡萄球菌的药物敏感性参照试管稀释法进行检测(
Strains | MIC (μg/mL) | |||||
---|---|---|---|---|---|---|
Van | Amp | Cm | Kan | Cip | Bacitracin | |
SE1457 | 4 | 1 | 4 | 16 | 0.25 | 64 |
ΔvraSR | 1-2 | 0.5 | 4 | 16 | 0.25 | 2 |
ΔlrgAB | 2 | 0.5 | 4 | 16 | 0.25 | 32 |
ΔvraSR-lrgAB | 1 | 0.25 | 4 | 16 | 0.25 | 1 |
Van:万古霉素;Amp:氨苄青霉素;Cm:氯霉素;Kan:卡那霉素;Cip:环丙沙星;Bacitracin:杆菌肽。实验均重复3次。
Van: Vancomycin; Amp: Ampicillin; Cm: Chloroamphenicol; Kan: Kanamycin; Cip: Ciprofloxacin. The experiment was repeated three times.
2.6 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株自溶增强
Triton X-100诱导的自溶结果显示,敲除vraSR或lrgAB基因,表皮葡萄球菌SE1457的自溶能力增强约2倍。SE1457、ΔvraSR、∆lrgAB和ΔvraSR-lrgAB菌株在Triton X-100诱导3 h条件下,自溶率分别为19.3%、32.0%、31.7%和53.8%。ΔvraSR-lrgAB突变株自溶能力较ΔvraSR和ΔlrgAB突变株均明显增强。ΔatlE突变株(对照株)自溶曲线较平稳(

图5 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株自溶率检测。过夜培养物培养至对数期,用0.2% Triton X-100缓冲溶液重悬。每30 min检测1次吸光度(OD600) (***:P<0.001)。
Figure 5 Detection of autolysis rate of SE1457 ΔvraSR-lrgAB mutant. Overnight cultures were grown to logarithmic phase and resuspend with 0.2% Triton X-100 buffer solution. The OD600 of the bacterial suspension was measured every 30 min (***: P<0.001).
2.7 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株生物被膜形成降低
依据微量平板定量法对表皮葡萄球菌生物被膜形成能力进行测定。野生株SE1457在96孔板底部展现出紧密且结构完整的生物被膜,其形成量与阳性对照株SE35984相当;相比之下,ΔvraSR和ΔlrgAB突变株生物被膜形成能力明显减弱,ΔvraSR-lrgAB突变株生物被膜的形成能力和ΔlrgAB突变株以及阴性对照ΔicaC突变株接近(

图6 表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株生物被膜形成情况。A:结晶紫染色后肉眼观察生物被膜形成;B:吸光度值(OD570)检测生物被膜形成量(**:P<0.01)。
Figure 6 The biofilm formation of SE1457ΔvraSR-lrgAB mutant. A: The formation of biofilm was observed by the naked eye after crystal violet staining; B: The optical density (OD570) was measured to assay biofilm formation (**: P<0.01).
3 讨论与结论
VraSR能感知环境中的压力因子(如抗生素、SDS等)变化,通过调控一系列下游靶基因的转录,影响葡萄球菌的药物敏感性、细胞壁合成、细菌的程序性细胞死亡等生物学表型。为进一步明确表皮葡萄球菌VraSR调控通路中LrgAB的生物学作用,本研究利用同源重组技术在ΔvraSR基础上进一步敲除lrgAB基因,获得表皮葡萄球菌SE1457 ΔvraSR-lrgAB突变株。
在培养环境以及菌株生长状态相同的情况下,单一敲除vraSR和lrgAB均不影响表皮葡萄球菌SE1457的生长,排除了单一基因缺失对表皮葡萄球菌生长特性的影响。然而,同时敲除两组基因后,表皮葡萄球菌SE1457生长迟缓,在高温(40 ℃)和低温(25 ℃)条件下生长迟缓更为显著。可能原因有2点:(1) 与生长代谢相关基因下调有关;(2) 与细胞壁变薄抵抗力降低有关。Wu等研究发现,敲除vraSR后表皮葡萄球菌SE1457的多个代谢相关基因转录水平下调(如gntPKR、glpFKD、sucCD、manA等)(包括lrgAB下调),细胞壁孔蛋白相关基因(cidA)上
与金黄色葡萄球菌的调控机制有所差异,表皮葡萄球菌VraSR并不直接作用于耐药基因的转录以改变药物敏感性,而是通过对糖类和氨基酸代谢的调节,间接影响细胞壁的合成过程,这一调控方式进一步影响细菌对药物的敏感性及其应对环境胁迫因子的抵抗
与金黄色葡萄球菌相似,VraSR和LrgAB通过影响胞壁质水解酶活性和细胞壁的完整性来调控表皮葡萄球菌自溶。自溶是细菌维护群体数量及结构的一种利它行为,受多种因素的影
生物被膜的形成是表皮葡萄球菌致病的主要原
此外,前期研究发现单一将vraS
综上所述,本研究发现VraSR可能通过调控下游靶基因LrgAB的表达影响表皮葡萄球菌的生物学表型,VraSR与LrgAB在调控表皮葡萄球菌环境胁迫(抗生素压力)、自溶活性以及生物被膜形成等方面可能具有协同作用。该研究为进一步探索VraSR-CidA-LrgAB调控通路作为防治葡萄球菌持续性感染的药靶提供了见解。
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
作者贡献声明
尚爽婕:实验操作、数据收集和处理、论文撰写和修改;陈卫国、张晓奎、朱健鹏、白松:实验操作、数据收集和处理;陈晓婷:提供技术支持;武有聪:研究构思和设计、论文审阅和修改。
利益冲突
公开声明
参考文献
ORTEGA-PEÑA S, MARTÍNEZ-GARCÍA S, RODRÍGUEZ-MARTÍNEZ S, CANCINO-DIAZ ME, CANCINO-DIAZ JC. Overview of Staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation[J]. Molecular Biology Reports, 2020, 47(1): 771-784. [百度学术]
KLEINSCHMIDT S, HUYGENS F, FAOAGALI J, RATHNAYAKE IU, HAFNER LM. Staphylococcus epidermidis as a cause of bacteremia[J]. Future Microbiology, 2015, 10(11): 1859-1879. [百度学术]
RIGHETTI E, KAHRAMANOĞULLARı O. The inverse correlation between robustness and sensitivity to autoregulation in two-component systems[J]. Mathematical Biosciences, 2021, 341: 108706. [百度学术]
GOMES F, TEIXEIRA P, CERCA N, CERI H, OLIVEIRA R. Virulence gene expression by Staphylococcus epidermidis biofilm cells exposed to antibiotics[J]. Microbial Drug Resistance, 2011, 17(2): 191-196. [百度学术]
TIERNEY AR, RATHER PN. Roles of two-component regulatory systems in antibiotic resistance[J]. Future Microbiology, 2019, 14(6): 533-552. [百度学术]
BELCHEVA A, GOLEMI-KOTRA D. A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage[J]. The Journal of Biological Chemistry, 2008, 283(18): 12354-12364. [百度学术]
GAO CH, DAI YY, CHANG WJ, FANG C, WANG ZR, MA XL. VraSR has an important role in immune evasion of Staphylococcus aureus with low level vancomycin resistance[J]. Microbes and Infection, 2019, 21(8/9): 361-367. [百度学术]
SENGUPTA M, JAIN V, WILKINSON BJ, JAYASWAL RK. Chromatin immunoprecipitation identifies genes under direct VraSR regulation in Staphylococcus aureus[J]. Canadian Journal of Microbiology, 2012, 58(6): 703-708. [百度学术]
WU YC, MENG YY, QIAN L, DING BX, HAN HY, CHEN HL, BAI L, QU D, WU Y. The vancomycin resistance-associated regulatory system VraSR modulates biofilm formation of Staphylococcus epidermidis in an ica-dependent manner[J]. mSphere, 2021, 6(5): e0064121. [百度学术]
PATEL K, GOLEMI-KOTRA D. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS[J]. F1000Research, 2015, 4: 79. [百度学术]
ZHANG X, CHEN YH, YAN TL, WANG HJ, ZHANG RB, XU YR, HOU YJ, PENG Q, SONG FP. Cell death dependent on holins LrgAB repressed by a novel ArsR family regulator CdsR[J]. Cell Death Discovery, 2024, 10(1): 173. [百度学术]
ENDRES JL, CHAUDHARI SS, ZHANG XY, PRAHLAD J, WANG SQ, FOLEY LA, LUCA S, BOSE JL, THOMAS VC, BAYLES KW. The Staphylococcus aureus CidA and LrgA proteins are functional holins involved in the transport of by-products of carbohydrate metabolism[J]. mBio, 2021, 13(1): e0282721. [百度学术]
GROICHER KH, FIREK BA, FUJIMOTO DF, BAYLES KW. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance[J]. Journal of Bacteriology, 2000, 182(7): 1794-1801. [百度学术]
AHN SJ, HULL W, DESAI S, RICE KC, CULP D. Understanding LrgAB regulation of Streptococcus mutans metabolism[J]. Frontiers in Microbiology, 2020, 11: 2119. [百度学术]
BELCHEVA A, VERMA V, GOLEMI-KOTRA D. DNA-binding activity of the vancomycin resistance associated regulator protein VraR and the role of phosphorylation in transcriptional regulation of the vraSR operon[J]. Biochemistry, 2009, 48(24): 5592-5601. [百度学术]
CHEN XW, PENG Z, JI XM, ZHANG J. Reducing cellular autolysis of Bacillus subtilis to improve keratinase production[J]. ACS Synthetic Biology, 2023, 12(10): 3106-3113. [百度学术]
XIANG BQ, LEI YJ, CHEN Y, ZHAO GQ, ZHOU YC, ZHOU YQ, HUANG YC, YE LH. Mechanistic study on the inhibition of Staphylococcus epidermidis biofilm by agrC-specific binding polypeptide[J]. Annals of Translational Medicine, 2020, 8(6): 337. [百度学术]
武有聪, 孟媛媛, 丁百兴, 韩海燕, 瞿涤, 白丽. 以质粒为基础的同源重组技术在葡萄球菌基因敲除中的应用[J]. 中国人兽共患病学报, 2019, 35(7): 581-586. [百度学术]
WU YC, MENG YY, DING BX, HAN HY, QU D, BAI L. Application of plasmid-based allelic replacement in the gene deletion of Staphylococcus[J]. Chinese Journal of Zoonoses, 2019, 35(7): 581-586 (in Chinese). [百度学术]
陈晓婷, 乾莲, 陈卫国, 孙士正, 白宗凯, 赵纯静, 武有聪. 表皮葡萄球菌vraSR-srrAB突变株的构建及生物学表型[J]. 微生物学通报, 2023, 50(8): 3562-3574. [百度学术]
CHEN XT, QIAN L, CHEN WG, SUN SZ, BAI ZK, ZHAO CJ, WU YC. Construction and biological phenotype characterization of vraSR-srrAB deletion mutant of Staphylococcus epidermidis[J]. Microbiology China, 2023, 50(8): 3562-3574 (in Chinese). [百度学术]
WRIGHT WD, SHAH SS, HEYER WD. Homologous recombination and the repair of DNA double-strand breaks[J]. Journal of Biological Chemistry, 2018, 293(27): 10524-10535. [百度学术]
BAE T, SCHNEEWIND O. Allelic replacement in Staphylococcus aureus with inducible counter-selection[J]. Plasmid, 2006, 55(1): 58-63. [百度学术]
GEHL J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research[J]. Acta Physiologica Scandinavica, 2003, 177(4): 437-447. [百度学术]
KATO Y, SUZUKI T, IDA T, MAEBASHI K. Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(1): 37-45. [百度学术]
BRUNSKILL EW, BAYLES KW. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus[J]. Journal of Bacteriology, 1996, 178(3): 611-618. [百度学术]
CHRISTENSEN GD, SIMPSON WA, YOUNGER JJ, BADDOUR LM, BARRETT FF, MELTON DM, BEACHEY EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices[J]. Journal of Clinical Microbiology, 1985, 22(6): 996-1006. [百度学术]
BERSCHEID A, FRANÇOIS P, STRITTMATTER A, GOTTSCHALK G, SCHRENZEL J, SASS P, BIERBAUM G. Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS[J]. The Journal of Antimicrobial Chemotherapy, 2014, 69(12): 3190-3198. [百度学术]
KURODA M, KURODA H, OSHIMA T, TAKEUCHI F, MORI H, HIRAMATSU K. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus[J]. Molecular Microbiology, 2003, 49(3): 807-821. [百度学术]
LEVINGER O, BIKELS-GOSHEN T, LANDAU E, FICHMAN M, SHAPIRA R. Epigallocatechin gallate induces upregulation of the two-component VraSR system by evoking a cell wall stress response in Staphylococcus aureus[J]. Applied and Environmental Microbiology, 2012, 78(22): 7954-7959. [百度学术]
BOSE JL, LEHMAN MK, FEY PD, BAYLES KW. Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation[J]. PLoS One, 2012, 7(7): e42244. [百度学术]
孙士正, 孟媛媛, 张维娜, 刁德睿, 陈晓婷, 武有聪. 表皮葡萄球菌SE1457与vraSR突变株转录组测序比较分析[J]. 中国病原生物学杂志, 2022, 17(11): 1241-1246. [百度学术]
SUN SZ, MENG YY, ZHANG WN, DIAO DR, CHEN XT, WU YC. Comparison analysis on the transcriptome sequencing of Staphylococcus epidermidis SE1457 and its isogenic vraSR mutant strain[J]. Journal of Pathogen Biology, 2022, 17(11): 1241-1246 (in Chinese). [百度学术]
OTTO M. Staphylococcus epidermidis: a major player in bacterial sepsis?[J]. Future Microbiology, 2017, 12(12): 1031-1033. [百度学术]
ABEBE GM. The role of bacterial biofilm in antibiotic resistance and food contamination[J]. International Journal of Microbiology, 2020, 2020: 1705814. [百度学术]
DHAR S, KUMARI H, BALASUBRAMANIAN D, MATHEE K. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa-their role in the development of resistance[J]. Journal of Medical Microbiology, 2018, 67(1): 1-21. [百度学术]
SHI YB, SUN JH. Current advance in the topological structure and function of holin encoded by bacteriophage lambda: a review[J]. Acta Microbiologica Sinica, 2012, 52(2): 141-145. [百度学术]
YANG KX, WANG LS, CAO XH, GU ZR, ZHAO GW, RAN MQ, YAN YJ, YAN JY, XU L, GAO CH, YANG M. The origin, function, distribution, quantification, and research advances of extracellular DNA[J]. International Journal of Molecular Sciences, 2022, 23(22): 13690. [百度学术]