分枝杆菌非同源末端连接生理功能及其在基因编辑中的应用
作者:
基金项目:

国家自然科学基金(82072246,82472325)


Non-homologous end-joining (NHEJ): physiological function in Mycobacterium and application in gene editing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    DNA双链断裂(double-strand breaks,DSBs)被认为是生物体内最为严重的一种DNA损伤形式,它不仅会导致基因组失去稳定性,还可能引发细胞死亡。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是2种主要的DNA双链断裂修复方法。参与NHEJ途径的核心成分在酵母和人中高度保守,部分细菌如分枝杆菌、铜绿假单胞菌和枯草芽孢杆菌,也具有NHEJ修复能力。NHEJ可能在分枝杆菌潜伏期的双链修复中发挥重要作用。本文对分枝杆菌中NHEJ的修复机制及其关键组分进行了系统综述,并探讨了其在基因编辑领域的应用前景,深入阐述了分枝杆菌NHEJ途径及其最新研究进展,为分枝杆菌NHEJ修复分子机制提供了新见解并为分枝杆菌NHEJ的应用提供了理论基础。

    Abstract:

    DNA double-strand breaks represent a common type of serious DNA damage in living organisms, causing instability of the genome and leading to cell death. Homologous recombination and non-homologous end-joining (NHEJ) are the two main ways to repair DNA double-strand breaks. The core components involved in the NHEJ pathway are highly conserved in both yeast and humans. A few bacteria such as Mycobacterium, Pseudomonas aeruginosa, and Bacillus subtilis also have the NHEJ mechanism. NHEJ plays a key role in the double strand repair of Mycobacterium in latency. This paper summarizes the mechanism and important components of NHEJ in Mycobacterium, introduces the application of NHEJ in gene editing, and reviews the research progress of the NHEJ pathway in Mycobacterium. We hope to bring new insights into the molecular mechanism and provide clues for the application of NHEJ in Mycobacterium.

    参考文献
    [1] BURMA S, CHEN BPC, CHEN DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity[J]. DNA Repair, 2006, 5(9/10): 1042-1048.
    [2] CECCALDI R, RONDINELLI B, D’ANDREA AD. Repair pathway choices and consequences at the double-strand break[J]. Trends in Cell Biology, 2016, 26(1): 52-64.
    [3] SHRIVASTAV M, de HARO LP, NICKOLOFF JA. Regulation of DNA double-strand break repair pathway choice[J]. Cell Research, 2008, 18(1): 134-147.
    [4] THOMPSON LH, SCHILD D. Recombinational DNA repair and human disease[J]. Mutation Research, 2002, 509(1/2): 49-78.
    [5] SCULLY R, PANDAY A, ELANGO R, WILLIS NA. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 698-714.
    [6] CHIRUVELLA KK, LIANG ZB, WILSON TE. Repair of double-strand breaks by end joining[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(5): a012757.
    [7] PASTWA E, BŁASIAK J. Non-homologous DNA end joining[J]. Acta Biochimica Polonica, 2003, 50(4): 891-908.
    [8] OH JM, MYUNG K. Crosstalk between different DNA repair pathways for DNA double strand break repairs[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2022, 873: 503438.
    [9] DUDÁS A, CHOVANEC M. DNA double-strand break repair by homologous recombination[J]. Mutation Research, 2004, 566(2): 131-167.
    [10] KOWALCZYKOWSKI SC, DIXON DA, EGGLESTON AK, LAUDER SD, REHRAUER WM. Biochemistry of homologous recombination in Escherichia coli[J]. Microbiological Reviews, 1994, 58(3): 401-465.
    [11] LONG QX, DU QL, FU TW, DRLICA K, ZHAO XL, XIE JP. Involvement of Holliday junction resolvase in fluoroquinolone-mediated killing of Mycobacterium smegmatis[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(3): 1782-1785.
    [12] SONODA E, HOCHEGGER H, SABERI A, TANIGUCHI Y, TAKEDA S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair[J]. DNA Repair, 2006, 5(9/10): 1021-1029.
    [13] ARAVIND L, KOONIN EV. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system[J]. Genome Research, 2001, 11(8): 1365-1374.
    [14] DOHERTY AJ, JACKSON SP, WELLER GR. Identification of bacterial homologues of the Ku DNA repair proteins[J]. FEBS Letters, 2001, 500(3): 186-188.
    [15] GONG CL, MARTINS A, BONGIORNO P, GLICKMAN M, SHUMAN S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria[J]. The Journal of Biological Chemistry, 2004, 279(20): 20594-20606.
    [16] PITCHER RS, BRISSETT NC, DOHERTY AJ. Nonhomologous end-joining in bacteria: a microbial perspective[J]. Annual Review of Microbiology, 2007, 61: 259-282.
    [17] MEEK K, GUPTA S, RAMSDEN DA, LEES-MILLER SP. The DNA-dependent protein kinase: the director at the end[J]. Immunological Reviews, 2004, 200: 132-141.
    [18] DELLA M, PALMBOS PL, TSENG HM, TONKIN LM, DALEY JM, TOPPER LM, PITCHER RS, TOMKINSON AE, WILSON TE, DOHERTY AJ. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine[J]. Science, 2004, 306(5696): 683-685.
    [19] SOWA DJ, WARNER MM, TETENYCH A, KOECHLIN L, BALARI P, RASCON PEREZ JP, CABA C, ANDRES SN. The Mycobacterium tuberculosis Ku C-terminus is a multi-purpose arm for binding DNA and LigD and stimulating ligation[J]. Nucleic Acids Research, 2022, 50(19): 11040-11057.
    [20] FULNEČEK J, KLIMENTOVÁ E, CAIRO A, BUKOVCAKOVA SV, ALEXIOU P, PROKOP Z, RIHA K. The SAP domain of Ku facilitates its efficient loading onto DNA ends[J]. Nucleic Acids Research, 2023, 51(21): 11706-11716.
    [21] ABBASI S, PARMAR G, KELLY RD, BALASURIYA N, SCHILD-POULTER C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining[J]. Cellular and Molecular Life Sciences, 2021, 78(10): 4589-4613.
    [22] ZHAO XK, DUAN XK, DAI YD, ZHEN JF, GUO JH, ZHANG K, WANG XY, KUANG ZM, WANG H, NIU JJ, FAN L, XIE JP. Mycobacterium Von Willebrand factor protein MSMEG_3641 is involved in biofilm formation and intracellular survival[J]. Future Microbiology, 2020, 15: 1033-1044.
    [23] BOWATER R, DOHERTY AJ. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining[J]. PLoS Genetics, 2006, 2(2): e8.
    [24] KUSHWAHA AK, GROVE A. Mycobacterium smegmatis Ku binds DNA without free ends[J]. The Biochemical Journal, 2013, 456(2): 275-282.
    [25] McGOVERN S, BACONNAIS S, ROBLIN P, NICOLAS P, DREVET P, SIMONSON H, PIÉTREMENT O, CHARBONNIER JB, Le CAM E, NOIROT P, LECOINTE F. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair[J]. Nucleic Acids Research, 2016, 44(10): 4785-4806.
    [26] CUI YL, DONG HN, MA YY, ZHANG DW. Strategies for applying nonhomologous end joining-mediated genome editing in prokaryotes[J]. ACS Synthetic Biology, 2019, 8(10): 2194-2202.
    [27] BERTRAND C, THIBESSARD A, BRUAND C, LECOINTE F, LEBLOND P. Bacterial NHEJ: a never ending story[J]. Molecular Microbiology, 2019, 111(5): 1139-1151.
    [28] ZHU H, NANDAKUMAR J, ANIUKWU J, WANG LK, GLICKMAN MS, LIMA CD, SHUMAN S. Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1711-1716.
    [29] ZHU H, SHUMAN S. Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D[J]. The Journal of Biological Chemistry, 2005, 280(28): 25973-25981.
    [30] ANIUKWU J, GLICKMAN MS, SHUMAN S. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends[J]. Genes & Development, 2008, 22(4): 512-527.
    [31] ZHU H, SHUMAN S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide[J]. The Journal of Biological Chemistry, 2008, 283(13): 8331-8339.
    [32]
    [32] HOFF G, BERTRAND C, ZHANG LL, PIOTROWSKI E, CHIPOT L, BONTEMPS C, CONFALONIERI F, McGOVERN S, LECOINTE F, THIBESSARD A, LEBLOND P. Multiple and variable NHEJ-like genes are involved in resistance to DNA damage in Streptomyces ambofaciens[J]. Frontiers in Microbiology, 2016, 7: 1901.
    [33] GONG CL, BONGIORNO P, MARTINS A, STEPHANOU NC, ZHU H, SHUMAN S, GLICKMAN MS. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C[J]. Nature Structural & Molecular Biology, 2005, 12(4): 304-312.
    [34] BHATTARAI H, GUPTA R, GLICKMAN MS. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis[J]. Journal of Bacteriology, 2014, 196(19): 3366-3376.
    [35] WELLER GR, KYSELA B, ROY R, TONKIN LM, SCANLAN E, DELLA M, DEVINE SK, DAY JP, WILKINSON A, D’ADDA Di FAGAGNA F, DEVINE KM, BOWATER RP, JEGGO PA, JACKSON SP, DOHERTY AJ. Identification of a DNA nonhomologous end-joining complex in bacteria[J]. Science, 2002, 297(5587): 1686-1689.
    [36] WRIGHT DG, CASTORE R, SHI RH, MALLICK A, ENNIS DG, HARRISON L. Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli[J]. Mutagenesis, 2017, 32(2): 245-256.
    [37] WANG HC, PERRAULT AR, TAKEDA Y, QIN W, WANG HY, ILIAKIS G. Biochemical evidence for Ku-independent backup pathways of NHEJ[J]. Nucleic Acids Research, 2003, 31(18): 5377-5388.
    [38] UEMATSU N, WETERINGS E, YANO KI, MOROTOMI-YANO K, JAKOB B, TAUCHER-SCHOLZ G, MARI PO, van GENT DC, CHEN BPC, CHEN DJ. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks[J]. The Journal of Cell Biology, 2007, 177(2): 219-229.
    [39] LIEBER MR. The mechanism of human nonhomologous DNA end joining[J]. Journal of Biological Chemistry, 2008, 283(1): 1-5.
    [40] AHNESORG P, SMITH P, JACKSON SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining[J]. Cell, 2006, 124(2): 301-313.
    [41] NICK MCELHINNY SA, SNOWDEN CM, McCARVILLE J, RAMSDEN DA. Ku recruits the XRCC4-ligase IV complex to DNA ends[J]. Molecular and Cellular Biology, 2000, 20(9): 2996-3003.
    [42] YAMTICH J, SWEASY JB. DNA polymerase family X: function, structure, and cellular roles[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010, 1804(5): 1136-1150.
    [43] MA YM, LU HH, TIPPIN B, GOODMAN MF, SHIMAZAKI N, KOIWAI O, HSIEH CL, SCHWARZ K, LIEBER MR. A biochemically defined system for mammalian nonhomologous DNA end joining[J]. Molecular Cell, 2004, 16(5): 701-713.
    [44] WU JH, SONG LW, LU MJ, GAO Q, XU SF, ZHOU PK, MA T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases[J]. MedComm, 2024, 5(7): e613.
    [45] PITCHER RS, TONKIN LM, GREEN AJ, DOHERTY AJ. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis[J]. Journal of Molecular Biology, 2005, 351(3): 531-544.
    [46] MATTHEWS LA, SIMMONS LA. Bacterial nonhomologous end joining requires teamwork[J]. Journal of Bacteriology, 2014, 196(19): 3363-3365.
    [47] dos VULTOS T, MESTRE O, TONJUM T, GICQUEL B. DNA repair in Mycobacterium tuberculosis revisited[J]. FEMS Microbiology Reviews, 2009, 33(3): 471-487.
    [48] SINHA KM, STEPHANOU NC, GAO F, GLICKMAN MS, SHUMAN S. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair[J]. Journal of Biological Chemistry, 2007, 282(20): 15114-15125.
    [49] CHADDA A, KOZLOV AG, NGUYEN B, LOHMAN TM, GALBURT EA. Mycobacterium tuberculosis Ku stimulates multi-round DNA unwinding by UvrD1 monomers[J]. Journal of Molecular Biology, 2024, 436(2): 168367.
    [50] LI ZD, WEN JK, LIN YN, WANG SH, XUE P, ZHANG ZP, ZHOU Y, WANG X, SUI L, BI LJ, ZHANG XN. A Sir2-like protein participates in mycobacterial NHEJ[J]. PLoS One, 2011, 6(5): e20045.
    [51] ZHOU Y, CHEN T, ZHOU L, FLEMING J, DENG JY, WANG XD, WANG LW, WANG YY, ZHANG XL, WEI WJ, BI LJ. Discovery and characterization of Ku acetylation in Mycobacterium smegmatis[J]. FEMS Microbiology Letters, 2015, 362(6): fnu051.
    [52] GUPTA R, BARKAN D, REDELMAN-SIDI G, SHUMAN S, GLICKMAN MS. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways[J]. Molecular Microbiology, 2011, 79(2): 316-330.
    [53] HOFF G, BERTRAND C, PIOTROWSKI E, THIBESSARD A, LEBLOND P. Genome plasticity is governed by double strand break DNA repair in Streptomyces[J]. Scientific Reports , 2018, 8(1): 5272.
    [54] SHIBATA A. Regulation of repair pathway choice at two-ended DNA double-strand breaks[J]. Mutation Research, 2017, 803/804/805: 51-55.
    [55] SINHA KM, UNCIULEAC MC, GLICKMAN MS, SHUMAN S. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria[J]. Genes & Development, 2009, 23(12): 1423-1437.
    [56] YAN MY, LI SS, DING XY, GUO XP, JIN Q, SUN YC. A CRISPR-assisted nonhomologous end-joining strategy for efficient genome editing in Mycobacterium tuberculosis[J]. mBio, 2020, 11(1): e02364-19.
    [57] SHEN M, ZHANG H, SHEN W, ZOU Z, LU S, LI G, HE X, AGNELLO M, SHI W, HU F, LE S. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation[J]. Nucleic Acids Research, 2018, 46(9): 4505-4514.
    [58] PŁOCIŃSKI P, BRISSETT NC, BIANCHI JL, BRZOSTEK A, KORYCKA-MACHAŁA M, DZIEMBOWSKI A, DZIADEK J, DOHERTY AJ. DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria[J]. Nature Communications, 2017, 8(1): 1251.
    [59] BERNHEIM A, CALVO-VILLAMAÑÁN A, BASIER C, CUI L, ROCHA EPC, TOUCHON M, BIKARD D. Inhibition of NHEJ repair by type II: a CRISPR-Cas systems in bacteria[J]. Nature Communications, 2017, 8(1): 2094.
    [60] ARSLAN Z, WURM R, BRENER O, ELLINGER P, NAGEL-STEGER L, OESTERHELT F, SCHMITT L, WILLBOLD D, WAGNER R, GOHLKE H, SMITS SHJ, PUL U. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2[J]. Nucleic Acids Research, 2013, 41(12): 6347-6359.
    [61] 殷亮, 宣慧娟, 鲁琳, 杨志伟. 原核生物的NHEJ修复途径[J]. 生物技术通报, 2010(5): 1-6. YIN L, XUAN HJ, LU L, YANG ZW. Non-homologous End Joining pathway in prokaryotic cells[J]. Biotechnology Bulletin, 2010(5): 1-6(in Chinese).
    [62] PITCHER RS, TONKIN LM, DALEY JM, PALMBOS PL, GREEN AJ, VELTING TL, BRZOSTEK A, KORYCKA-MACHALA M, CRESAWN S, DZIADEK J, HATFULL GF, WILSON TE, DOHERTY AJ. Mycobacteriophage exploit NHEJ to facilitate genome circularization[J]. Molecular Cell, 2006, 23(5): 743-748.
    [63] HE LM, FAN XY, XIE JP. Comparative genomic structures of Mycobacterium CRISPR-cas[J]. Journal of Cellular Biochemistry, 2012, 113(7): 2464-2473.
    [64] HUANG QQ, LUO HP, LIU MQ, ZENG J, ABDALLA AE, DUAN XK, LI QM, XIE JP. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2(Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis[J]. Infection, Genetics and Evolution, 2016, 40: 295-301.
    [65] 曲芸墨, 丁鑫园, 闫玫漪, 郭晓鹏, 孙义成. CRISPR基因组编辑技术在结核分枝杆菌中的研究进展及应用[J]. 中国防痨杂志, 2023, 45(2): 208-214. Qu YM, Ding XY, Yan MY, Guo XP Sun YC. Development and application of CRISPR assisted genome editing technology in Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(2): 208-214(in Chinese).
    [66] JIANG WY, BIKARD D, COX D, ZHANG F, MARRAFFINI LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3): 233-239.
    [67] MALI P, ESVELT KM, CHURCH GM. Cas9 as a versatile tool for engineering biology[J]. Nature Methods, 2013, 10(10): 957-63.
    [68] Zheng X, Li SY, Zhao GP, Wang J. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis[J]. Biochemical and Biophysical Research Communications, 2017, 485(4): 768-774.
    [69] CUI L, BIKARD D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli[J]. Nucleic Acids Research, 2016, 44(9): 4243-4251.
    [70] LI L, WEI KK, ZHENG GS, LIU XC, CHEN SX, JIANG WH, LU YH. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces[J]. Applied and Environmental Microbiology, 2018, 84(18): e00827-18.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

向莎莎,黄煜,谢建平. 分枝杆菌非同源末端连接生理功能及其在基因编辑中的应用[J]. 生物工程学报, 2025, 41(4): 1280-1290

复制
分享
文章指标
  • 点击次数:86
  • 下载次数: 114
  • HTML阅读次数: 101
  • 引用次数: 0
历史
  • 收稿日期:2024-08-05
  • 最后修改日期:2024-11-26
  • 在线发布日期: 2025-04-24
  • 出版日期: 2025-04-25
文章二维码
您是第6541435位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司