砷耦合还原的微生物协同机制及其环境效应
作者:
基金项目:

湖南省自然科学基金(2023JJ30230);湖南省教育厅优秀青年基金(21B0451);湖南省教学研究与改革项目(HNJG-2022-0174);大学生创新创业训练计划(S2024105340120)


Microorganism-mediated arsenic reduction and its environmental effects
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    砷(arsenic, As)是一种常见的有毒污染元素,微生物介导的砷形态转变是砷生物地球化学循环的重要组成部分。在砷的各类微生物代谢过程中,砷的耦合还原对环境影响较大,也是容易被忽视的过程。本文主要从砷的生物地球化学循环出发,介绍了甲烷氧化、厌氧铵氧化、铁(Fe)-硫(S)氧化与砷耦合还原的微生物协同机制,有机质、pH值以及氧化还原电位是影响砷耦合还原的主要因素。砷经耦合还原后,毒性和迁移性大大增加,可能会增加砷污染的风险。因此,进一步明确碳(C)、氮(N)、Fe、S等这些元素在砷耦合过程中的影响以及挖掘出更多的微生物耦合还原过程,在防治砷污染方面具有重要意义。

    Abstract:

    Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked. From the biogeochemical cycle of As, this review introduces the microorganism-mediated methane oxidation, anaerobic ammonium oxidation, and iron (Fe)-sulfur (S) oxidation coupled with As reduction. Organic matter, pH, and redox potential are the main factors affecting the coupling reduction. After the coupling reduction, the toxicity and migration of As are greatly enhanced, which may increase the risk of As pollution. Therefore, it is of great significance to clarify the influences of carbon, nitrogen, Fe, S and other elements on the coupling process and explore more microbial processes coupled with As reduction for the prevention and control of As pollution.

    参考文献
    [1] ALI JD, GUATAME-GARCIA A, LEYBOURNE MI, HARRISON AL, VRIENS B. Dissolved thiolated arsenic formed by weathering of mine wastes[J]. Chemosphere, 2023, 321: 138124-138132.
    [2] CHEN GL, MAO T, GUAN QJ, FAN RH, XU WT, YU WJ, GAO ZY. Deep removal of arsenic from arsenic-bearing gypsum using a seed-induced crystal control technique and its mechanisms[J]. Separation and Purification Technology, 2025, 352: 128178-128189
    [3] IRSHAD S, XIE ZM, WANG J, NAWAZ A, LUO Y, WANG YX, MEHMOOD S, FAHEEM. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata[J]. Journal of Hazardous Materials, 2020, 381: 120903-120911
    [4] CHEN GL, RAN YL, MA YQ, CHEN Z, LI ZX, CHEN YQ. Influence of Rahnella aquatilis on arsenic accumulation by Vallisneria natans (Lour.) Hara for the phytoremediation of arsenic-contaminated water[J]. Environmental Science and Pollution Research, 2021, 28(32): 44354-44360.
    [5] CHEN GL, LIU XM, XU JM, BROOKES PC, WU JJ. Arsenic species uptake and subcellular distribution in Vallisneria natans (Lour.) Hara as influenced by aquatic pH[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4): 478-482.
    [6] EL-GHIATY MA, EL-KADI AOS. The duality of arsenic metabolism: impact on human health[J]. Annual Review of Pharmacology and Toxicology, 2023, 63: 341-358.
    [7] 陈章, 陈振山, 刘涛, 陈国梁, 李志贤, 周剑林, 陈远其. 一种重金属抗性新拟盘多毛孢属微生物及其应用: CN113025502A[P]. 2021-06-25.CHEN Z, CHEN ZS, LIU T, CHEN GL, LI ZX, ZHOU JL, CHEN YQ. Heavy metal resistant pestalotiopsis neohirsuta microorganism and application thereof: CN113025502A[P]. 2021-06-25(in Chinese).
    [8] BISWAS R, VIVEKANAND V, SAHA A, GHOSH A, SARKAR A. Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation[J]. International Biodeterioration & Biodegradation, 2019, 136: 55-62.
    [9] MANDAL D, SONAR R, SAHA I, AHMED S, BASU A. Isolation and identification of arsenic resistant bacteria: a tool for bioremediation of arsenic toxicity[J]. International Journal of Environmental Science and Technology, 2022, 19(10): 9883-9900.
    [10] REID MC, MAILLARD J, BAGNOUD A, FALQUET L, Le VO P, BERNIER-LATMANI R. Arsenic methylation dynamics in a rice paddy soil anaerobic enrichment culture[J]. Environmental Science & Technology, 2017, 51(18): 10546-10554.
    [11] CHEN C, LI LY, HUANG K, ZHANG J, XIE WY, LU YH, DONG XZ, ZHAO FJ. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 2019, 13(10): 2523-2535.
    [12] SUN RR, LI Y, LIN NN, OU CX, WANG XY, ZHANG L, JIANG F. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis[J]. Environment International, 2020, 136: 105457-105465.
    [13] ZHAO MM, ZHENG GG, KANG XY, ZHANG XY, GUO JM, ZHANG MX, ZHANG JW, CHEN YP, XUE LG. Arsenic pollution remediation mechanism and preliminary application of arsenic-oxidizing bacteria isolated from industrial wastewater[J]. Environmental Pollution, 2023, 324: 121384-121395.
    [14] AULITTO M, GALLO G, PUOPOLO R, MORMONE A, LIMAURO D, CONTURSI P, PIOCHI M, BARTOLUCCI S, FIORENTINO G. Genomic insight of Alicyclobacillus mali FL18 isolated from an arsenic-rich hot spring[J]. Frontiers in Microbiology, 2021, 12: 639697-639714.
    [15] BANERJEE A, SARKAR S, GORAI S, KABIRAJ A, BANDOPADHYAY R. High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring[J]. Electronic Journal of Biotechnology, 2021, 53: 1-7.
    [16] BIANCO PREVOT A, GINEPRO M, PERACACIOLO E, ZELANO V, de LUCA DA. Chemical vs bio-mediated reduction of hexavalent chromium. An in-vitro study for soil and deep waters remediation[J]. Geoderma, 2018, 312: 17-23.
    [17] SCHLESINGER WH, KLEIN EM, VENGOSH A. The global biogeochemical cycle of arsenic[J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007515.
    [18] 夏清强, 汪劲松, 万进. 产嗜铁素砷抗性微生物在砷污染环境中的作用[J]. 生物工程学报, 2020, 36(3): 450-454.XIA QQ, WANG JS, WAN J. Role of siderophore-producing and arsenic-resistant bacteria in arsenic-contaminated environment[J]. Chinese Journal of Biotechnology, 2020, 36(3): 450-454(in Chinese).
    [19] SEVAK P, PUSHKAR B. Bacterial responses towards arsenic toxicity and in-depth analysis of molecular mechanism along with possible on-field application[J]. Journal of Environmental Chemical Engineering, 2023, 11(4): 110187-110198.
    [20] SHI LD, GUO T, LV PL, NIU ZF, ZHOU YJ, TANG XJ, ZHENG P, ZHU LZ, ZHU YG, KAPPLER A, ZHAO HP. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils[J]. Nature Geoscience, 2020, 13(12): 799-805.
    [21] GLODOWSKA M, STOPELLI E, SCHNEIDER M, RATHI B, STRAUB D, LIGHTFOOT A, KIPFER R, BERG M, JETTEN M, KLEINDIENST S, KAPPLER A, GLODOWSKA M, KAPPLER A, KLEINDIENST S, CIRPKA OA, RATHI B, LIGHTFOOT A, STOPELLI E, BERG M, KIPFER R, et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation[J]. Communications Earth & Environment, 2020, 1(1): 42-48.
    [22] ZHANG JW, MA T, YAN YN, XIE XJ, ABASS OK, LIU CQ, ZHAO ZQ, WANG ZZ. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, Northern China[J]. Environmental Pollution, 2018, 237: 28-38.
    [23] PENG SS, LIN X, THOMPSON RL, XI Y, LIU G, HAUGLUSTAINE D, LAN X, POULTER B, RAMONET M, SAUNOIS M, YIN Y, ZHANG Z, ZHENG B, CIAIS P. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature, 2022, 612(7940): 477-482.
    [24] SEGARRA KEA, SCHUBOTZ F, SAMARKIN V, YOSHINAGA MY, HINRICHS KU, JOYE SB. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6(1): 7477-7484.
    [25] McGLYNN SE, CHADWICK GL, KEMPES CP, ORPHAN VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia[J]. Nature, 2015, 526(7574): 531-535.
    [26] SHEN LD, HU BL, LIU S, CHAI XP, HE ZF, REN HX, LIU Y, GENG S, WANG W, TANG JL, WANG YM, LOU LP, XU XY, ZHENG P. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7171-7180.
    [27] LUO D, MENG XT, ZHENG NG, LI YY, YAO HY, CHAPMAN SJ. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved[J]. Science of the Total Environment, 2021, 788: 147773-147781.
    [28] DONG QY, WANG Z, SHI LD, LAI CY, ZHAO HP. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor[J]. Environmental Science and Pollution Research International, 2019, 26(25): 26286-26292.
    [29] LV PL, ZHONG L, DONG QY, YANG SL, SHEN WW, ZHU QS, LAI CY, LUO AC, TANG YN, ZHAO HP. The effect of electron competition on chromate reduction using methane as electron donor[J]. Environmental Science and Pollution Research International, 2018, 25(7): 6609-6618.
    [30] ETTWIG KF, ZHU BL, SPETH D, KELTJENS JT, JETTEN MSM, KARTAL B. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796.
    [31] KALYUZHNAYA MG, YANG S, ROZOVA ON, SMALLEY NE, CLUBB J, LAMB A, GOWDA GA, RAFTERY D, FU Y, BRINGEL F, VUILLEUMIER S, BECK DAC, TROTSENKO YA, KHMELENINA VN, LIDSTROM ME. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium[J]. Nature Communications, 2013, 4(1): 2785-2791.
    [32] SHI LD, ZHOU YJ, TANG XJ, KAPPLER A, CHISTOSERDOVA L, ZHU LZ, ZHAO HP. Coupled aerobic methane oxidation and arsenate reduction contributes to soil-arsenic mobilization in agricultural fields[J]. Environmental Science & Technology, 2022, 56(16): 11845-11856.
    [33] CHEN JW, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 2013, 1827(2): 136-144.
    [34] XIU W, WU M, NIXON SL, LLOYD JR, BASSIL NM, GAI RX, ZHANG TJ, SU Z, GUO HM. Genome-resolved metagenomic analysis of groundwater: insights into arsenic mobilization in biogeochemical interaction networks[J]. Environmental Science & Technology, 2022, 56(14): 10105-10119.
    [35] WU YX, XU LG, WANG ZL, CHENG JX, LU JL, YOU HL, ZHANG XD. Microbially mediated Fe-N coupled cycling at different hydrological regimes in riparian wetland[J]. Science of the Total Environment, 2022, 851: 158237-158246.
    [36] ZHANG MM, KOLTON M, HÄGGBLOM MM, SUN XX, YU K, HE B, YUAN ZJ, DONG YR, SU XF, CHEN ZY, LI H, XIAO TF, XIAO EZ, SUN WM. Anaerobic ammonium oxidation coupled to arsenate reduction, a novel biogeochemical process observed in arsenic-contaminated paddy soil[J]. Geochimica et Cosmochimica Acta, 2022, 335: 11-22.
    [37] CHEN XL, SHENG YZ, WANG GC, ZHOU PP, LIAO F, MAO HR, ZHANG HY, QIAO ZY, WEI YQ. Spatiotemporal successions of N, S, C, Fe, and As cycling genes in groundwater of a wetland ecosystem: Enhanced heterogeneity in wet season[J]. Water Research, 2024, 251: 121105-121117.
    [38] HOCKMANN K, PLANER-FRIEDRICH B, JOHNSTON SG, PEIFFER S, BURTON ED. Antimony mobility in sulfidic systems: Coupling with sulfide-induced iron oxide transformations[J]. Geochimica et Cosmochimica Acta, 2020, 282: 276-296.
    [39] HU SW, ZHEN LR, LIU SH, LIU CX, SHI ZQ, LI FB, LIU TX. Synchronous sequestration of cadmium and fulvic acid by secondary minerals from Fe(II)-catalyzed ferrihydrite transformation[J]. Geochimica et Cosmochimica Acta, 2022, 334: 83-98.
    [40] TOWNSEND LT, SHAW S, OFILI NER, KALTSOYANNIS N, WALTON AS, NEILL TS, LLOYD JR, HEATH S, HIBBERD R, MORRIS K. Formation of a U(VI)-persulfide complex during environmentally relevant sulfidation of iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2020, 54(1): 129-136.
    [41] 姚淑华, 雍玉玲, 李士凤, 王海博, 吕洪涛, 石中亮. Fe(II)、Fe(III)对砷与不同分子量腐植酸络合性能的影响[J]. 中国环境科学, 2022, 42(10): 4650-4657. YAO SH, YONG YL, LI SF, WANG HB, LV HT, SHI ZL. Effect of Fe(Ⅱ) and Fe(Ⅲ) on complexation properties of arsenic with humic acid of different molecular weight[J]. China Environmental Science, 2022, 42(10): 4650-4657(in Chinese).
    [42] CHEN HR, ZHANG DR, LI Q, NIE ZY, PAKOSTOVA E. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization[J]. Water Research, 2022, 223: 118957-118971.
    [43] TAKAYA Y, KADOKURA M, KATO T, TOKORO C. Removal mechanisms of arsenite by coprecipitation with ferrihydrite[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105819-105826.
    [44] TONG JR, LI R, ZHANG J, MA XM, WU F, SUO HR, LIU CX. Coupled dynamics of As-containing ferrihydrite transformation and As desorption/re-adsorption in presence of sulfide[J]. Journal of Hazardous Materials, 2020, 384: 121287-121295.
    [45] ZHANG YY, XIE XJ, SUN ST, WANG YX. Arsenic transformation and redistribution in groundwater induced by the complex geochemical cycling of iron and sulfur[J]. Science of the Total Environment, 2023, 894: 164941-164952.
    [46] HAN YS, PARK JH, KIM SJ, JEONG HY, AHN JS. Redox transformation of soil minerals and arsenic in arsenic-contaminated soil under cycling redox conditions[J]. Journal of Hazardous Materials, 2019, 378: 120745-120753.
    [47] HOSSAIN M, MESTROT A, NORTON GJ, DEACON C, ISLAM MR, MEHARG AA. Arsenic dynamics in paddy soil under traditional manuring practices in Bangladesh[J]. Environmental Pollution, 2021, 268: 115821-115828.
    [48] CHEN GL, MA YQ, XU WT, CHEN Z, LI ZX, ZHOU JL, YU WJ. Remediation of cadmium-contaminated soil by micro-nano nitrogen-doped biochar and its mechanisms[J]. Environmental Science and Pollution Research International, 2023, 30(16): 48078-48087.
    [49] CAI XX, YUAN Y, YU LP, ZHANG BP, LI JB, LIU T, YU Z, ZHOU SG. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer[J]. Journal of Hazardous Materials, 2020, 391: 122213-122221.
    [50] CHENG C, HAN H, WANG YP, WANG R, HE LY, SHENG XF. Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil[J]. Science of the Total Environment, 2020, 740: 139972-139980.
    [51] YANG JH, LIU XX, FEI CY, LU HJ, MA YH, MA ZW, YE WL. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil[J]. Ecotoxicology and Environmental Safety, 2023, 259: 115046-115055.
    [52] SINHA D, DATTA S, MISHRA R, AGARWAL P, KUMARI T, ADEYEMI SB, KUMAR MAURYA A, GANGULY S, ATIQUE U, SEAL S, KUMARI GUPTA L, CHOWDHURY S, CHEN JT. Negative impacts of arsenic on plants and mitigation strategies[J]. Plants, 2023, 12(9): 1815-1858.
    [53] HEDRICH S, SCHIPPERS A. Distribution of acidophilic microorganisms in natural and man-made acidic environments[J]. Current Issues in Molecular Biology, 2021, 40(1): 25-48.
    [54] ZHOU YH, HUANG WX, NIE ZY, LIU HC, LIU Y, WANG C, XIA JL, SHU WS. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions[J]. Journal of Environmental Sciences, 2024, 137: 681-700.
    [55] JIANG Y, GAO XB, YANG XW, GONG PL, PAN ZD, YI L, MA SY, LI CC, KONG SQ, WANG YX. Sulfate-reducing bacteria (SRB) mediated carbonate dissolution and arsenic release: Behavior and mechanisms[J]. Science of the Total Environment, 2024, 929: 172572-172581.
    [56] PATHAK P, GHOSH P, SWARAJ A, YU TL, SHEN CC. Role of carbon and sulfur biogeochemical cycles on the seasonal arsenic mobilization process in the shallow groundwater of the Bengal aquifer[J]. Applied Geochemistry, 2022, 141: 105322-105332.
    [57] AFROZ H, SU SM, CAREY M, MEHARG AA, MEHARG C. Inhibition of microbial methylation via arsM in the rhizosphere: arsenic speciation in the soil to plant continuum[J]. Environmental Science & Technology, 2019, 53(7): 3451-3463.
    [58] 尹雪斐, 刘玉玲, 伍德, 黄薪铭, 张朴心, 铁柏清. 1株高耐性肠杆菌的筛选及对镉、砷同步钝化[J]. 环境科学, 2023, 44(1): 436-443. YIN XF, LIU YL, WU D, HUANG XM, ZHANG PX, TIE BQ. Inactivation of Cd and As by an Enterobacter lsolated from Cd and As contaminated farmland soil[J]. Environmental Science, 2023, 44(1): 436-443(in Chinese).
    [59] WANG Z, GUO HM, LIU HY, ZHANG WM. Source, migration, distribution, toxicological effects and remediation technologies of arsenic in groundwater in China[J]. China Geology, 2023, 6(3): 476-493.
    [60] XU XW, WANG P, ZHANG J, CHEN C, WANG ZP, KOPITTKE PM, KRETZSCHMAR R, ZHAO FJ. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction[J]. Environmental Pollution, 2019, 251: 952-960.
    [61] JIA P, LI FL, ZHANG SC, WU GX, WANG YT, LI JT. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient[J]. Frontiers in Microbiology, 2022, 13: 989272-989286.
    [62] 陈国梁. 沉水植物对砷的富集特征及机理研究[D]. 杭州: 浙江大学, 2014.CHEN GL. The characteristics and mechanism of arsenic accumulation by submerged plants[D]. Hnagzhou: Zhejiang University, 2014(in Chinese).
    [63] 李旖曦, 陈涵冰, 王耀强, 张虹, 张勇, 韩永和. 耐砷促生菌对超富集植物蜈蚣草砷吸收及根际微生物群落的调控作用[J]. 微生物学报, 2023, 63(6): 2401-2414.LI YX, CHEN HB, WANG YQ, ZHANG H, ZHANG Y, HAN YH. Effects of arsenic-tolerant growth-promoting bacteria on arsenic uptake and rhizosphere microbial community of hyperaccumulator Pteris vittata[J]. Acta Microbiologica Sinica, 2023, 63(6): 2401-2414(in Chinese).
    [64] CHEN GL, FENG T, LI ZX, CHEN Z, CHEN YQ, WANG HH, XIANG YC. Influence of sulfur on the arsenic phytoremediation using Vallisneria natans (Lour.) Hara[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3): 411-414.
    [65] 冉艳淋, 陈国梁. 几种常见沉水植物对砷富集的研究进展[J]. 生物工程学报, 2020, 36(3): 407-415.RAN YL, CHEN GL. Arsenic accumulation by submerged plants: a review[J]. Chinese Journal of Biotechnology, 2020, 36(3): 407-415(in Chinese).
    [66] YANG CY, HAN N, INOUE C, YANG YL, NOJIRI H, HO YN, CHIEN MF. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata[J]. Journal of Hazardous Materials, 2022, 434: 128870-128880.
    [67] FAN LC, DIPPOLD MA, THIEL V, GE TD, WU JS, KUZYAKOV Y, DORODNIKOV M. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH4 balance under global warming[J]. Global Change Biology, 2022, 28(2): 654-664.
    [68] HUAMING G, ZHIPENG G, WEI X. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153-163.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毛腾,陈国梁,屈志慧. 砷耦合还原的微生物协同机制及其环境效应[J]. 生物工程学报, 2024, 40(12): 4480-4492

复制
分享
文章指标
  • 点击次数:283
  • 下载次数: 276
  • HTML阅读次数: 223
  • 引用次数: 0
历史
  • 收稿日期:2024-07-01
  • 在线发布日期: 2024-12-25
  • 出版日期: 2024-12-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司