江南卷柏脱氢抗坏血酸还原酶的分子特性
作者:
基金项目:

国家自然科学基金 (Nos. 30770146, 30770149),国家重点基础研究发展计划 (973 计划) (No. 2009CB119104) 资助。


Molecular characterizations of two dehydroascorbate reductases from Selaginella moellendorffii
Author:
Fund Project:

National Natural Science Foundation of China (Nos. 30770146, 30770149), National Basic Research and Development Program of China (973 Program) (No. 2009CB119104).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    脱氢抗坏血酸还原酶 (DHAR) 在植物抗坏血酸?谷胱甘肽循环中发挥着重要作用。利用同源克隆技术从江南卷柏中克隆到2 个脱氢抗坏血酸还原酶基因,分别命名为SmDHAR1SmDHAR2SmDHAR1SmDHAR2 分别编码218 和241 个氨基酸,预测分子量分别是23.97 kDa 和27.33 kDa。基因组序列分析显示这2 个基因分别含有5 和6 个内含子。器官表达模式分析发现这2 个基因在根、茎、叶中均有表达,是组成型表达基因。在大肠杆菌中表达并纯化了2 个基因的重组蛋白。酶活性分析显示SmDHAR1 和SmDHAR2 蛋白对底物DHA 的活性有显著差异,分别是19.76和0.17 μmol/(min·mg)。热力学稳定性分析显示这2 个重组蛋白的热力学稳定性具有明显差异。因此,基因结构与酶学性质的差异预示着这2 个基因可能存在功能上的分化。

    Abstract:

    Plant dehydroascorbate reductase (DHAR) is a physiologically important reducing enzyme in the ascorbate-glutathione recycling reaction. In this study, two DHARs genes (SmDHAR1 and SmDHAR2) were isolated from Selaginella moellendorffii. The SmDHAR1 and SmDHAR2 genes encode two proteins of 218 and 241 amino acid residues, with a calculated molecular mass of 23.97 kDa and 27.33 kDa, respectively. The genomic sequence analysis showed SmDHAR1 and SmDHAR2 contained five and six introns, respectively. Reverse transcription PCR revealed that the SmDHAR1 and SmDHAR2 were constitutive expression genes in S. moellendorffii. The recombinant SmDHAR1 and SmDHAR2 proteins were overexpressed in E. coli, and were purified by Ni-affinity chromatography. The recombinant SmDHAR1 showed 116-fold higher enzymatic activity towards the substrate dehydroascorbate than recombinant SmDHAR2. The recombinant SmDHAR1 showed higher thermal stability than recombinant SmDHAR2. These results indicated obvious functional divergence between the duplicate genes SmDHAR1 and SmDHAR2.

    参考文献
    [1] Chen Z, Gallie DR. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol, 2006, 142(2): 775?787.
    [2] Ushimaru T, Nakagawa T, Fujioka Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol, 2006, 163(11): 1179?1184.
    [3] Eltayeb AE, Kawano N, Badawi GH, et al. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant, 2006, 127(1): 57?65.
    [4] Kato Y, Urano J, Maki Y, et al. Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol, 1997, 38(2): 173?178.
    [5] Shimaoka T, Yokota A, Miyake C. Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol, 2000, 41(10): 1110?1118.
    [6] Dixon DP, Davis BG, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277(34): 30859?30869.
    [7] Yu CM, Yang YP, Liu XY, et al. Molecular and biochemical analysis of two genes encoding dehydroascorbate reductase in common wheat. Chin J Biotech, 2009, 25(10): 1483?1489. 余春梅, 杨艳萍, 刘鑫燕, 等. 普通小麦中双脱氢抗酸还原酶 (TaDHAR) 基因的克隆与生化特性分析. 生物工程学报, 2009, 25(10): 1483?1489.
    [8] Yang HL, Zhao YR, Wang CL, et al. Molecular characterization of a dehydroascorbate reductase from Pinus bungeana. J Integr Plant Biol, 2009, 51(11): 993?1001.
    [9] Weng JK, Tanurdzic M, Chapple C. Functional analysis and comparative genomics of expressed sequence tags from the lycophyte Selaginella moellendorffii. BMC Genomics, 2005, 6:85.
    [10] Cao Y, Tan NH, Chen JJ, et al. Bioactive flavones and biflavones from Selaginella moellendorffii Hieron. Fitoterapia, 2010, 81(4): 253?258.
    [11] Wan DR, Chen KL, Zhan YH. Investigations and studies on medicinal plants from Selaginellaceae in Hubei Province. J Chin Materia Medica, 2005, 30(19): 1507?1510. 万定荣, 陈科力, 詹亚华. 湖北省卷柏科药用植物调研究. 中国中药杂志, 2005, 30(19): 1507?1510.
    [12] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 1974, 249(22): 7130?7139.
    [13] Ricci G, Caccuri AM, Lo Bello M, et al. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem, 1994, 218(2): 463?465.
    [14] Edwards R, Dixon DP. Plant glutathione transferases. Methods Enzymol, 2005, 401: 169?186.
    [15] Basantani M, Srivastava A. Plant glutathione transferases - a decade falls short. Can J Bot, 2007, 85(5): 443?456.
    [16] Liu HM, Wang L, Zhang XC, et al. Advances in the studies of lycophytes and monilophytes with reference to systematic arrangement of families distributed in China. J Syst Evol, 2008, 46(6): 808?829. 刘红梅, 王丽, 张宪春, 等. 石松类和蕨类植物研究:兼论国产类群的科级分类系统. 植物分类学报, 2008, 46(6): 808?829.
    [17] Li CX, Lu SG, Yang Q. Advances in the studies of the origin and systematics of pteridophytes. Chin Bull Bot, 2004, 21(4): 478?485. 李春香, 陆树刚, 杨群. 蕨类植物起源与系统发生关究进展. 植物学通报, 2004, 21(4): 478?485.
    [18] Lan T, Yang ZL, Yang X, et al. Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell, 2009, 21(12): 3749?3766.
    [19] Fomenko DE, Gladyshev VN. CxxS: fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci, 2002, 11(10): 2285?2296.
引用本文

成子硕,兰婷,李迪,杨海灵,曾庆银. 江南卷柏脱氢抗坏血酸还原酶的分子特性[J]. 生物工程学报, 2011, 27(1): 76-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-04-07
  • 最后修改日期:2010-06-07
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司