兰科植物microRNA的研究进展
作者:
基金项目:

国家自然科学基金(31801891);江苏高校品牌专业建设工程(PPZY2015A063)


Advances in the research of microRNA in Orchidaceae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    microRNA (miRNA) 是一类广泛存在的非编码小分子RNA,在植物的生长发育和应激反应等过程中起到重要的调控作用。本文从miRNA在植物中的作用机制出发,对近10年来兰科植物各属miRNA的鉴定、几类miRNA的具体功能及miRNA的其他相关技术研究进行综述,以期为兰科植物小分子RNA的功能作用及调控网络解析提供参考。

    Abstract:

    As a class of small non-coding RNAs, microRNA (miRNA) is widely present and plays important regulatory roles in plant growth, development and stress response. Based on the mechanism of miRNAs in plants, we review the identification of miRNAs in some genera of Orchidaceae, the specific functions of several miRNAs and other relevant studies on miRNAs in the last decade, in order to provide a reference for better understanding function and regulatory network of small RNAs in orchids.

    参考文献
    [1] Chung MY, Chung MG. The breeding systems of Cremastra appendiculata and Cymbidium goeringii: high levels of annual fruit failure in two self-compatible orchids. Ann Bot Fenn, 2003, 40(2): 81-85.
    [2] Yukawa T, Stern WL. Comparative vegetative anatomy and systematics of Cymbidium (Cymbidieae: Orchidaceae). Bot J Linn Soc, 2002, 138(4): 383-419.
    [3] Su CL, Chao YT, Yen SH, et al. Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol, 2013, 54(2): e11.
    [4] Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. PNAS, 2004, 101(34): 12753-12758.
    [5] O'Toole AS, Miller S, Haines N, et al. Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs. Nucleic Acids Res, 2006, 34(11): 3338-3344.
    [6] Park W, Li JJ, Song RT, et al. Carpel factory, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12(17): 1484-1495.
    [7] Zhang CJ, Mo BX, Chen XM, et al. Advances on the molecular action mechanisms of plant miRNA. Biotech Bull, 2020, 36(7): 1-14 (in Chinese). 张翠桔, 莫蓓莘, 陈雪梅, 等. 植物miRNA作用方式的分子机制研究进展. 生物技术通报, 2020, 36(7): 1-14.
    [8] Yoshikawa M, Peragine A, Park MY, et al. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev, 2005, 19(18): 2164-2175.
    [9] Tang GL, Reinhart BJ, Bartel DP, et al. A biochemical framework for RNA silencing in plants. Genes Dev, 2003, 17(1): 49-63.
    [10] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plant. Annu Rev Plant Biol, 2006, 57: 19-53.
    [11] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185-1190.
    [12] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
    [13] Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet, 2006, 38(S6): S31-S36.
    [14] Lv DJ, Zhao JY, Chen J, et al. Advances in the research of plant microRNA. Plant Physiol J, 2013, 49(9): 847-854 (in Chinese). 吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展. 植物生理学报, 2013, 49(9): 847-854.
    [15] Cao HY, Wang K, Gao HR, et al. Research progress on microRNA involved in phytohormone response and biosynthesis. Plant Physiol J, 2013, 49(11): 1121-1126 (in Chinese). 曹慧颖, 王可, 高何瑞, 等. 植物激素相关microRNA研究进展. 植物生理学报, 2013, 49(11): 1121-1126.
    [16] An FM, Chan MT. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana. Plane Cell Physiol, 2012, 53(10): 1737-1750.
    [17] Wang J, Wang J, Zhang C, et al. Identification of conserved microRNAs and their targets in Phalaenopsis orchid. Russ J Plant Physiol, 2013, 60(6): 845-854.
    [18] Kozomara A, Griffiths-Jones S. miRbase: integrating microRNA annotation and deep- sequencing data. Nucleic Acids Res, 2010, 39(S1): D152-D157.
    [19] Chao YT, Su CL, Jean WH, et al. Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. Plant Mol Biol, 2014, 84(4/5): 529-548.
    [20] Zhao AJ, Cui Z, Li TG, et al. mRNA and miRNA expression analysis reveal the regulation for flower spot patterning in Phalaenopsis 'Panda'. Int J Mol Sci, 2019, 20(17): 4250.
    [21] Cai J, Liu X, Vanneste K, et al. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet, 2015, 47(1): 65-72.
    [22] Huang JZ, Lin CP, Cheng TC, et al. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ, 2016, 4(10): e2017.
    [23] Meng YJ, Yu DL, Xue J, et al. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep, 2016, 6: 18864.
    [24] Yu DL, Wan Y, Ito H, et al. PmiRDiscVali: an integrated pipeline for plant microRNA discovery and validation. BMC Genomics, 2019, 20: 133.
    [25] Yang ZL, Yang DF, Ding XF, et al. MicroRNA expression profiles in conventional and micropropagated Dendrobium officinale. Genes Genom, 2015, 37(4): 315-325.
    [26] Krishnatreya DB, Baruah PM, Dowarah B, et al. Mining of miRNAs from EST data in Dendrobium nobile. Bioinformation, 2020, 16(3): 245-255.
    [27] Li XB, Jin F, Jin L, et al. Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium. BMC Genomics, 2015, 16: 622.
    [28] Yang FX, Zhu GF, Wang Z, et al. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. BMC Genomics, 2017, 18: 367.
    [29] Yang FX, Zhu GF. MicroRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. Acta Hortic, 2018, 1208: 85-95.
    [30] Yi QF, Liu DM, Chen HF, et al. Major diseases on Cymbidium spp. and their control. Plant Prot, 2004, 30(1): 71-73 (in Chinese). 易绮斐, 刘东明, 陈红锋, 等. 兰花主要病害及其防治. 植物保护, 2004, 30(1): 71-73.
    [31] Samson R, Legendre JB, Christen R, et al. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. Nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. . Int J Syst Evol Microbiol, 2005, 55: 1415-1427.
    [32] Fu SF, Tsai TM, Chen YR, et al. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling. Physiol Plant, 2012, 145(3): 406-425.
    [33] Wang PY, Wang CQ, Zhang ST, et al. Sequences characteristics and expression patterns of 25 miRNA precursors in Oncidium hybridum. Acta Bot Boreal- Occident Sin, 2018, 38(9): 1587-1597 (in Chinese). 王培育, 王丛巧, 张舒婷, 等. 文心兰25条miRNA前体序列特性及其表达分析. 西北植物学报, 2018, 38(9): 1587-1597.
    [34] Wang PY, Lin ZC, Wang CQ, et al. Expression characteristics of 15 miRNAs and their candidate target genes in Oncidium hybridum. Chin J Appl Environ Biol, 2019, 25(1): 108-116 (in Chinese). 王培育, 林争春, 王丛巧, 等. 文心兰15个miRNAs及其候选靶标的表达特性. 应用与环境生物学报, 2019, 25(1): 108-116.
    [35] Ye W, Jiang JL, Lin YL, et al. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC Plant Biol, 2019, 19: 601.
    [36] Lin CS, Chen JJW, Huang YT, et al. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant Mol Biol, 2013, 82(1/2): 193-204.
    [37] Aceto S, Sica M, De Paolo S, et al. The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-like MADS-box gene as a new miRNA target. PLoS One, 2014, 9(5): e97839.
    [38] Esfeld K, Wesche IHK, Jakob SS, et al. Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodivers Conserv, 2008, 17(10): 2441-2453.
    [39] Yu S, Wang JW. Recent progress in miR156-mediated aging pathway in plants. Chin Sci Bull, 2014, 59(15): 1398-1404 (in Chinese). 虞莎, 王佳伟. miR156介导的高等植物年龄途径研究进展. 科学通报, 2014, 59(15): 1398-1404.
    [40] Zheng J, Ma YR, Zhang MY, et al. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. Int J Mol Sci, 2019, 20(11): 2725.
    [41] Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133(18): 3539-3547.
    [42] An FM, Hsiao SR, Chan MT. Sequencing-based approaches reveal low ambient temperature- responsive and tissue-specific microRNAs in Phalaenopsis orchid. PLoS One, 2011, 6(5): e18937.
    [43] Han YY, Yan QH, Ming F. An effective homologous cloning method for isolating novel miR172s from Phalaenopsis hybrida. Genet Mol Biol, 2014, 27(2): 414-422.
    [44] Yang FX, Zhu GF, Wang Z, et al. A putative miR172-targeted CeAPETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium. Genet Mol Res, 2015, 14(4): 12049-12061.
    [45] Jung JH, Seo PJ, Kang SK, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol, 2011, 76(1/2): 35-45.
    [46] Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759.
    [47] Salemme M, Sica M, Iazzetti G, et al. The AP2-like gene OitaAP2 is alternatively spliced and differentially expressed in inflorescence and vegetative tissues of the orchid Orchis italica. PLoS One, 2013, 8(10): e77454.
    [48] Luo M, Zhang ZM, Gao J, et al. The role of miR319 in plant development regulation. Hereditas (Beijing), 2011, 33(11): 1203-1211 (in Chinese). 罗茂, 张志明, 高健, 等. miR319在植物器官发育中的调控作用. 遗传, 2011, 33(11): 1203-1211.
    [49] De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep, 2015, 5: 16265.
    [50] Xu ZH, Liu Q, Miao DP, et al. Impacts of Cymbidium goeringii's miR396 overexpression on the leaf growth, photosynthesis and chlorophyll fluorescence in Arabidopsis thaliana. Biotech Bull, 2020, 37(5): 65-74 (in Chinese). 徐子涵, 刘倩, 苗大鹏, 等. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响. 生物技术通报, 2020, 37(5): 65-74.
    [51] Unver T, Bakar M, Shearman RC, et al. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics, 2010, 283(4): 397-413.
    [52] Rodriguez ER, Mecchia MA, Debernardi JM, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010, 137(1): 103-112.
    [53] Wang L, Gu XL, Xu DY, et al. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot, 2011, 62(2): 761-773.
    [54] Petchthai U, Peng D, Huehne PS. The bias in small RNA profiles between symptomless Dendrobium and severe symptom Ascocenda orchids infected long-term with Cymbidium mosaic virus. Plant Mol Biol Rep, 2015, 33(4): 819-828.
    [55] Tsai CC, Chiang YC, Weng IS, et al. Evidence of purifying selection and co-evolution at the fold-back arm of the novel precursor microRNA159 gene in Phalaenopsis species (Orchidaceae). PLoS One, 2014, 9(12): e114493.
    [56] Yao SZ, Yang ZR, Yang RX, et al. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant, 2019, 12(8): 1114-1122.
    [57] Liu QP, Hu HC, Zhu LY, et al. Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L. ). J Agric Food Chem, 2015, 63(40): 8849-8861.
    [58] Yuan SR, Li ZG, Li DY, et al. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol, 2015, 169(1): 576-593.
    [59] Millar AA, Lohe A, Wong G. Biology and function of miR159 in plants. Plants, 2019, 8(8): 255.
    [60] Tseng KC, Chiang-Hsieh YF, Pai H, et al. microRPM: a microRNA prediction model based only on plant small RNA sequencing data. Bioinformatics, 2018, 34(7): 1108-1115.
    [61] Yang XZ, Li L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatic, 2011, 27(18): 2614-2615.
    [62] Zhao AJ, Cui Z, Yang WH, et al. Optimization of real-time fluorescence quantitative PCR system for miRNA in Phalaenopsis amabilis. Mol Plant Breeding, 2018, 16(5): 1566-1572 (in Chinese). 赵安瑾, 崔峥, 杨文汉, 等. 蝴蝶兰(Phalaenopsis amabilis) miRNA荧光定量体系的优化. 分子植物育种, 2018, 16(5): 1566-1572.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐子涵,陈跃,胡凤荣. 兰科植物microRNA的研究进展[J]. 生物工程学报, 2022, 38(1): 66-76

复制
分享
文章指标
  • 点击次数:406
  • 下载次数: 1409
  • HTML阅读次数: 1371
  • 引用次数: 0
历史
  • 收稿日期:2021-02-03
  • 在线发布日期: 2022-01-25
文章二维码
您是第6364927位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司