利用CRISPR-Cas系统防控细菌耐药性的研究进展
作者:
基金项目:

国家自然科学基金(32170083,31670084);浙江省重点研发计划(2020C02031);省部共建农产品质量安全危害因子与风险防控国家重点实验室开放基金(2021DG700024-KF202105);浙江省新苗计划(2021R403034)


Prevention and control of antimicrobial resistance using CRISPR-Cas system:a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌多重耐药是医药健康、农林牧渔、生态环境等多领域共同面临的全球性挑战。抗生素耐药基因跨物种跨区域传播是导致细菌多重耐药形成的重要原因。然而,目前尚无有效方案解决日益严峻的细菌多重耐药问题。由规律成簇间隔短回文重复序列和与之相关的蛋白组成的CRISPR-Cas系统,可靶向切割进入细菌的外源核酸,具有防控耐药基因转移导致细菌多重耐药的应用潜力。文中在简要介绍CRISPR-Cas系统作用机制的基础上,着重讨论近年来以质粒、噬菌体、纳米粒子等载体传递CRISPR-Cas工具消减耐药基因的研究进展,进而展望该研究领域的发展趋势,为防控细菌多重耐药性提供新的思考方向。

    Abstract:

    Bacterial multi-drug resistance (MDR) is a global challenge in the fields of medicine and health,agriculture and fishery,ecology and environment.The cross-region spread of antibiotic resistance genes (ARGs) among different species is one of the main cause of bacterial MDR.However,there is no effective strategies for addressing the intensifying bacterial MDR.The CRISPR-Cas system,consisting of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins,can targetedly degrade exogenous nucleic acids,thus exhibiting high application potential in preventing and controlling bacterial MDR caused by ARGs.This review briefly introduced the working mechanism of CRISPR-Cas systems,followed by discussing recent advances in reducing ARGs by CRISPR-Cas systems delivered through mediators (e.g.plasmids,bacteriophages and nanoparticle).Moreover,the trends of this research field were envisioned,providing a new perspective on preventing and controlling MDR.

    参考文献
    [1] McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Heal-Syst Pharm, 1997, 54(12):1420-1433.
    [2] Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa:mechanisms and alternative therapeutic strategies. Biotechnol Adv, 2019, 37(1):177-192.
    [3] Sun DC, Jeannot K, Xiao YH, et al. Editorial:horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol, 2019, 10:1933.
    [4] Wang B, Sun DC. Detection of NDM-1 carbapenemase-producing Acinetobacter calcoaceticus and Acinetobacter junii in environmental samples from livestock farms. J Antimicrob Chemother, 2015, 70(2):611-613.
    [5] Wan P, Cui SY, Ma ZB, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist, 2020, 13:1171-1178.
    [6] Wang R, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun, 2018, 9(1):1179.
    [7] Bello-López JM, Cabrero-Martínez OA, Ibáñez-Cervantes G, et al. Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms, 2019, 7(9):363.
    [8] Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev, 1994, 58(3):563-602.
    [9] Anjum R, Grohmann E, Krakat N. Anaerobic digestion of nitrogen rich poultry manure:impact of thermophilic biogas process on metal release and microbial resistances. Chemosphere, 2017, 168:1637-1647.
    [10] Na G, Lu Z, Gao H, et al. The effect of environmental factors and migration dynamics on the prevalence of antibiotic-resistant Escherichia coli in estuary environments. Sci Rep, 2018, 8(1):1663.
    [11] Tan L, Wang F, Liang M, et al. Antibiotic resistance genes attenuated with salt accumulation in saline soil. J Hazard Mater, 2019, 374:35-42.
    [12] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011, 45:273-297.
    [13] Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9(6):467-477.
    [14] Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014, 32(11):1146-1150.
    [15] Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol, 2014, 32(11):1141-1145.
    [16] Hao MJ, He YZ, Zhang HF, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother, 2020, 64(9):e00843-20.
    [17] Kang YK, Kwon K, Ryu JS, et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem, 2017, 28(4):957-967.
    [18] Kiga K, Tan XE, Ibarra-Chávez R, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun, 2020, 11(1):2934.
    [19] Rodrigues M, McBride SW, Hullahalli K, et al. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. bioRxiv, 2019. DOI:10.1101/678573.
    [20] Valderrama JA, Kulkarni SS, Nizet V, et al. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat Commun, 2019, 10(1):5726.
    [21] Wu ZY, Huang YT, Chao WC, et al. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J Adv Res, 2019, 18:61-69.
    [22] Xu Z, Li M, Li Y, et al. Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Rep, 2019, 29(6):1707-1717.e3.
    [23] Zhang H, Cheng QX, Liu AM, et al. A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol, 2017, 8:812.
    [24] Vrancianu CO, Gheorghe I, Dobre EG, et al. Emerging strategies to combat β-lactamase producing ESKAPE pathogens. Int J Mol Sci, 2020, 21(22):8527.
    [25] Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891):960-964.
    [26] Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:backward and forward. Cell, 2018, 172(6):1239-1259.
    [27] Semenova E, Jore MM, Datsenko KA, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS, 2011, 108(25):10098-10103.
    [28] Gholizadeh P, KöseŞ, Dao S, et al. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist, 2020, 13:1111-1121.
    [29] Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. PNAS, 2015, 112(23):7267-7272.
    [30] Bikard D, Hatoum-Aslan A, Mucida D, et al. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe, 2012, 12(2):177-186.
    [31] Zheng Y, Li J, Wang B, et al. Endogenous type Ⅰ CRISPR-Cas:from foreign DNA defense to prokaryotic engineering. Front Bioeng Biotechnol, 2020, 8:62.
    [32] Makarova KS, Zhang F, Koonin EV. SnapShot:class 1 CRISPR-Cas systems. Cell, 2017, 168(5):946-946.e1.
    [33] Niewoehner O, Garcia-Doval C, Rostøl JT, et al. Type Ⅲ CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature, 2017, 548(7669):543-548.
    [34] Burmistrz M, Krakowski K, Krawczyk-Balska A. RNA-targeting CRISPR-Cas systems and their applications. Int J Mol Sci, 2020, 21(3):1122.
    [35] Makarova KS, Zhang F, Koonin EV. SnapShot:class 2 CRISPR-Cas systems. Cell, 2017, 168(1/2):328-328.e1.
    [36] O'Connell MR. Molecular mechanisms of RNA targeting by Cas13-containing type Ⅵ CRISPR-Cas systems. J Mol Biol, 2019, 431(1):66-87.
    [37] Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017, 15(3):169-182.
    [38] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909):1843-1845.
    [39] Glass Z, Lee M, Li Y, et al. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol, 2018, 36(2):173-185.
    [40] Cabezón E, Ripoll-Rozada J, Peña A, et al. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev, 2015, 39(1):81-95.
    [41] Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol, 2019, 65(1):34-44.
    [42] Hardiman CA, Weingarten RA, Conlan S, et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob Agents Chemother, 2016, 60(8):4910-4919.
    [43] Sun J, Zeng X, Li XP, et al. Plasmid-mediated colistin resistance in animals:current status and future directions. Anim Health Res Rev, 2017, 18(2):136-152.
    [44] Wang P, He D, Li B, et al. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J Antimicrob Chemother, 2019, 74(9):2559-2565.
    [45] Peters JM, Koo BM, Patino R, et al. Enabling genetic analysis of diverse bacteria with mobile-CRISPRi. Nat Microbiol, 2019, 4(2):244-250.
    [46] Kim JS, Cho DH, Park M, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol, 2016, 26(2):394-401.
    [47] Le S, He XS, Tan YL, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One, 2013, 8(7):e68562.
    [48] Clewell DB. Bacterial sex pheromone-induced plasmid transfer. Cell, 1993, 73(1):9-12.
    [49] Guest RL, Raivio TL. Role of the gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol, 2016, 24(5):377-390.
    [50] Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc, 2013, 8(11):2180-2196.
    [51] Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.
    [52] Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9):822-826.
    [53] Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31(9):839-843.
    [54] Kortright KE, Chan BK, Koff JL, et al. Phage therapy:a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe, 2019, 25(2):219-232.
    [55] Torres-Barceló C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infec, 2018, 7(1):168.
    [56] Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science, 2009, 323(5910):139-141.
    [57] Park JY, Moon BY, Park JW, et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep, 2017, 7:44929.
    [58] Liu L, Li X, Ma J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell, 2017, 170(4):714-726.e10.
    [59] Günday C, Anand S, Gencer HB, et al. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res, 2020, 10(3):706-720.
    [60] Jin L, Zeng X, Liu M, et al. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics, 2014, 4(3):240-255.
    [61] Rosenblum D, Gutkin A, Kedmi R, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv, 2020, 6(47):eabc9450.
    [62] Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv, 2013, 10(2):215-228.
    [63] Herai RH. Avoiding the off-target effects of CRISPR/Cas9 system is still a challenging accomplishment for genetic transformation. Gene, 2019, 700:176-178.
    [64] Wei T, Cheng Q, Min YL. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun, 2020, 11(1):3232.
    [65] Wan F, Draz MS, Gu MJ, et al. Novel strategy to combat antibiotic resistance:a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics, 2021, 13(3):352.
    [66] Westra ER, Pul U, Heidrich N, et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol, 2010, 77(6):1380-1393.
    [67] Pul U, Wurm R, Arslan Z, et al. Identification and characterization of E. coli CRISPR-Cas promoters and their silencing by H-NS. Mol Microbiol, 2010, 75(6):1495-1512.
    [68] Sun DC, Mao XD, Fei MY, et al. Histone-like nucleoid-structuring protein (H-NS) paralogue StpA activates the type Ⅰ-E CRISPR-Cas system against natural transformation in Escherichia coli. Appl Environ Microbiol, 2020, 86(14):e00731-20.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晨羽,刘芝芝,唐标,杨华,孙东昌. 利用CRISPR-Cas系统防控细菌耐药性的研究进展[J]. 生物工程学报, 2022, 38(4): 1432-1445

复制
分享
文章指标
  • 点击次数:753
  • 下载次数: 1721
  • HTML阅读次数: 1655
  • 引用次数: 0
历史
  • 收稿日期:2021-05-10
  • 最后修改日期:2021-11-17
  • 在线发布日期: 2022-04-22
文章二维码
您是第6363046位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司