肠道菌群在肿瘤发生发展及免疫治疗中作用的研究进展
作者:
基金项目:

杭州医学院基本科研业务费基础科研项目计划一般项目(KYYB202002)


The role of intestinal microbiota in tumor occurrence, development and immunotherapy: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [141]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    肠道菌群是一个与人体共生的复杂微生物区系,近年来被越来越多的研究者所关注。研究发现,肠道菌群不仅在维持人体正常生理功能中起到重要作用,在肿瘤发生、发展、诊断及治疗中也有不可忽视的作用。本文在对肠道菌群与肿瘤关系进行概述的基础上,重点介绍了肠道菌群促进肿瘤发生、发展的主要机制,以及肠道菌群对抗肿瘤免疫治疗尤其是免疫检查点抑制疗法的影响。此外,文中还总结了目前可行的调节肠道菌群以提高肿瘤治疗疗效的方法,并提出了其中可能存在的困难和挑战。

    Abstract:

    The intestinal microbiota is a complex micro-ecological system symbiotic with human body, which has attracted increasing attention in recent years. The intestinal microbiota plays important roles not only in maintaining normal physiological functions of the human body but also in the occurrence, development, diagnosis and treatment of tumors. This review summarized the relationship between the intestinal microbiota and tumor, highlighting the mechanisms by which intestinal microbiota modulates tumor occurrence, development and immunotherapy, particularly the immune checkpoint therapy. This review also summarized the currently available methods for enhancing the efficacy of tumor therapy through regulation of intestinal microbiota. Challenges in the field as well as future perspectives were also discussed.

    参考文献
    [1] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol, 2016, 14(8):1-14.
    [2] Li W, Deng Y, Chu Q, et al. Gut microbiome and cancer immunotherapy. Cancer letters, 2019, 447:41-47.
    [3] Biasucci G, Rubini M, Riboni S, et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev, 2010, 86(1):13-15.
    [4] Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota:an unexpected link. Sci Transl Med, 2015, 7(271):1-24.
    [5] Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer, 2013, 13(11):800-812.
    [6] Dzutsev A, Goldszmid RS, Viaud S, et al. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol, 2015, 45(1):17-31.
    [7] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 2018, 15(2):111-128.
    [8] Kamada N, Chen GY, Inohara N, et al. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol, 2013, 14(7):685-690.
    [9] Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 2004, 54(5):1469-1476.
    [10] Belcheva A, Irrazabal T, Martin A. Gut microbial metabolism and colon cancer:can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays, 2015, 37(4):403-412.
    [11] Tomasello G, Mazzola M, Leone A, et al. Nutrition, oxidative stress and intestinal dysbiosis:influence of diet on gut microbiota in inflammatory bowel diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160(4):461-466.
    [12] Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci, 2017, 74(16):2959-2977.
    [13] Savin Z, Kivity S, Yonath H, et al. Smoking and the intestinal microbiome. Arch Microbiol, 2018, 200(5):677-684.
    [14] Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol, 2019, 4(2):293-305.
    [15] Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio, 2016, 7(2):e02210-02215.
    [16] Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab, 2018, 27(6):1222-1235.e6.
    [17] Rodríguez C, Romero E, Garrido-Sanchez L, et al. Microbiota insights in Clostridium difficile infection and inflammatory bowel disease. Gut Microbes, 2020, 12(1):1-25.
    [18] Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut, 2020, 69(2):283-294.
    [19] Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome, 2020, 8(28):1-14.
    [20] Uribe-Herranz M, Rafail S, Beghi S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Invest, 2020, 130(1):466-479.
    [21] Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ, 2019, 26(11):2447-2463.
    [22] Lu Y, Chen J, Zheng J, et al. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep, 2016, 6:1-10.
    [23] Fernández M, Reina-Pérez I, Astorga J, et al. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Heal, 2018, 15(8):1747-1767.
    [24] 高志光. 肠道菌群结构异常与大肠癌发病风险及预后的相关性研究[D]. 上海:上海交通大学, 2015. Gao ZG. The correlative research of the effect of intestinal microbiota dysbiosis on the risk and prognosis of colorectal cancer[D]. Shanghai:Shanghai Jiao Tong University, 2015(in Chinese).
    [25] Di Domenico EG, Cavallo I, Pontone M, et al. Biofilm producing Salmonella typhi:chronic colonization and development of gallbladder cancer. Int J Mol Sci, 2017, 18(9):e1887-e1901.
    [26] Huang Y, Fan XG, Wang ZM, et al. Identification of Helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J Clin Pathol, 2004, 57(12):1273-1277.
    [27] Elzouki ANY, Buhjab SI, Alkialani A, et al. Gastric cancer and Helicobacter pylori infection in the eastern Libya:a descriptive epidemiological study. Arab J Gastroenterol, 2012, 13(2):85-88.
    [28] Schistosomes, liver flukes and Helicobacter pylori. IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 7-14 June 1994. IARC monographs on the evaluation of carcinogenic risks to humans, 1994, 61:1-241.
    [29] Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013, 499(7456):97-101.
    [30] Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin, 2017, 67(4):326-344.
    [31] Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe, 2011, 10(4):324-335.
    [32] Yu LX, Schwabe RF. The gut microbiome and liver cancer:mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol, 2017, 14(9):527-539.
    [33] Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 2018, 359(6375):592-597.
    [34] Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis, 2015, 60(2):208-215.
    [35] Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 2009, 15(2):103-113.
    [36] Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol, 2017, 10(2):421-433.
    [37] Chen T, Li Q, Zhang X, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol, 2018, 79:93-101.
    [38] Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013, 14(2):207-215.
    [39] Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity, 2015, 42(2):344-355.
    [40] Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013, 14(2):195-206.
    [41] Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology, 2020, 72(2):470-485.
    [42] Barczyńska R, Litwin M, Sliżewska K, et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol J Microbiol, 2018, 67(3):339-345.
    [43] Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol, 2017, 15(8):465-478.
    [44] Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe, 2014, 15(3):317-328.
    [45] Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol, 2016, 70:395-411.
    [46] Hold GL. Gastrointestinal microbiota and colon cancer. Dig Dis, 2016, 34(3):244-250.
    [47] Yamamoto ML, Maier I, Dang AT, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res, 2013, 73(14):4222-4232.
    [48] Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol, 2009, 7(12):887-894.
    [49] Blaser MJ. Disappearing microbiota:Helicobacter pylori protection against esophageal adenocarcinoma. Cancer Prev Res (Phila), 2008, 1(5):308-311.
    [50] Strachan DP. Hay fever, hygiene, and household size. BMJ, 1989, 299(6710):1259-1260.
    [51] Zhu Z, Huang J, Li X, et al. Gut microbiota regulate tumor metastasis via circRNA/miRNA networks. Gut Microbes, 2020, 12(1):1-16.
    [52] Boursi B, Mamtani R, Haynes K, et al. Recurrent antibiotic exposure may promote cancer formation-another step in understanding the role of the human microbiota? Eur J Cancer, 2015, 51(17):2655-2664.
    [53] Anderson LA, Murphy SJ, Johnston BT, et al. Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence:results from the FINBAR case-control study. Gut, 2008, 57(6):734-739.
    [54] Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371):91-97.
    [55] Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264):1079-1084.
    [56] Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264):1084-1089.
    [57] Jenq RR, Taur Y, Devlin SM, et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biology of blood and marrow transplantation:Journal of the American Society for Blood and Marrow Transplantation, 2015, 21(8):1373-1383.
    [58] Ge Z, Wu S, Zhang Z, et al. Mechanism of tumor cells escaping from immune surveillance of NK cells. Immunopharmacol Immunotoxicol, 2020, 42(3):187-198.
    [59] Wang Q, Xu R. Immunotherapy-related adverse events (irAEs):extraction from FDA drug labels and comparative analysis. JAMIA Open, 2019, 2(1):173-178.
    [60] Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer, 2019, 7(1):108-123.
    [61] D'Alessandro G, Antonangeli F, Marrocco F, et al. Gut microbiota alterations affect glioma growth and innate immune cells involved in tumor immunosurveillance in mice. Eur J Immunol, 2020, 50(5):705-711.
    [62] O'Neill LA, Golenbock D, Bowie AG. The history of toll-like receptors-redefining innate immunity. Nat Rev Immunol, 2013, 13(6):453-460.
    [63] Tanoue T, Umesaki Y, Honda K. Immune responses to gut microbiota-commensals and pathogens. Gut Microbes, 2010, 1(4):224-233.
    [64] Bouskra D, Brézillon C, Bérard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature, 2008, 456(7221):507-510.
    [65] Moreau MC, Ducluzeau R, Guy-Grand D, et al. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun, 1978, 21(2):532-539.
    [66] Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. PNAS, 2010, 107(27):12204-12209.
    [67] Cebula A, Seweryn M, Rempala GA, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, 497(7448):258-262.
    [68] Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, 331(6015):337-341.
    [69] Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine, 2014, 32(48):6377-6389.
    [70] Guiducci C, Vicari AP, Sangaletti S, et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res, 2005, 65(8):3437-3446.
    [71] Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161):967-970.
    [72] Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett, 2020, 469:456-467.
    [73] Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest, 2007, 117(8):2197-2204.
    [74] Kuczma MP, Ding ZC, Li T, et al. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget, 2017, 8(67):111931-111942.
    [75] Uribe-Herranz M, Bittinger K, Rafail S, et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight, 2018, 3(4):e94952(1-18).
    [76] Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161):971-976.
    [77] Villéger R, Lopès A, Carrier G, et al. Intestinal microbiota:a novel target to improve anti-tumor treatment? Int J Mol Sci, 2019, 20(18):e4584-e4609.
    [78] Snyder A, Pamer E, Wolchok J. Could microbial therapy boost cancer immunotherapy? Science, 2015, 350(6264):1031-1032.
    [79] Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359(6371):104-108.
    [80] Derosa L, Routy B, Kroemer G, et al. The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncoimmunology, 2018, 7(6):e1434468(1-3).
    [81] Brueckl WM, Ficker JH, Zeitler G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer, 2020, 20(1):1185-1201.
    [82] Jerby-Arnon L, Shah P, Cuoco MS, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell, 2018, 175(4):984-997.e24.
    [83] Derosa L, Routy B, Fidelle M, et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol, 2020, 78(2):195-206.
    [84] Naidoo J, Cottrell TR, Lipson EJ, et al. Chronic immune checkpoint inhibitor pneumonitis. J Immunother Cancer, 2020, 8(1):e000840(1-7).
    [85] Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol, 2017, 28(6):1368-1379.
    [86] Wang Y, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med, 2018, 24(12):1804-1808.
    [87] Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors:a systematic review and meta-analysis. JAMA Oncol, 2018, 4(12):1721-1728.
    [88] Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun, 2016, 7:10391-10399.
    [89] Gori S, Inno A, Belluomini L, et al. Gut microbiota and cancer:how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol, 2019, 143:139-147.
    [90] Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia, 2017, 19(10):848-855.
    [91] Luo B, Zhang Y, Zhang C, et al. Intestinal microbiota:a potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Lett, 2021, 509:53-62.
    [92] 张昕雨, 张璟, 朱小强, 等. 基于宏基因组学分析构建诊断大肠癌的肠道菌群标签. 上海交通大学学报(医学版), 2018, 38(9):1019-1026. Zhang XY, Zhang J, Zhu XQ, et al. Bacterial signatures for diagnosis of colorectal cancer by fecal metagenomics analysis. J Shanghai Jiao Tong Univ (Med Sci Ed), 2018, 38(9):1019-1026(in Chinese).
    [93] 陈卓, 钱祥, 张爱琴, 等. 基于肠道菌群结构特征研究胰腺癌不同中医证型与预后的相关性. 浙江中西医结合杂志, 2019, 29(12):965-969. Chen Z, Qian X, Zhang AQ, et al. Correlation between different TCM syndrome types of pancreatic cancer and their prognosis based on structural characteristics of intestinal flora. Zhejiang JITCWM, 2019, 29(12):965-969(in Chinese).
    [94] Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome, 2018, 6(1):70-82.
    [95] Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 2019, 25(4):679-689.
    [96] Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4):1030-1042.
    [97] Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol, 2019, 9:112-121.
    [98] Gupta H, Youn GS, Shin MJ, et al. Role of gut microbiota in hepatocarcinogenesis. Microorganisms, 2019, 7(5):121-137.
    [99] Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology, 2019, 69(1):107-120.
    [100] 郑微, 赵鹏, 张永宏, 等. 宏基因组测序技术分析原发性肝癌患者肠道菌群特征. 中华实验和临床感染病杂志, 2021, 15(3):149-157. Zheng W, Zhao P, Zhang YH, et al. Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer. Chin J Exp Clin Infect Dis, 2021, 15(3):149-157(in Chinese).
    [101] Hakim H, Dallas R, Wolf J, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia. Clin Infect Dis, 2018, 67(4):541-548.
    [102] Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65(12):1973-1980.
    [103] Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170(3):548-563.e16.
    [104] Qvist, Niels and 2015 European Society of Coloproctology collaborating group. The relationship between method of anastomosis and anastomotic failure after right hemicolectomy and ileo-caecal resection:an international snapshot audit. Colorectal disease:the official journal of the Association of Coloproctology of Great Britain and Ireland, 2017, 19(8):296-311.
    [105] Scarborough JE, Mantyh CR, Sun Z, et al. Combined mechanical and oral antibiotic bowel preparation reduces incisional surgical site infection and anastomotic leak rates after elective colorectal resection:an analysis of colectomy-targeted ACS NSQIP. Ann Surg, 2015, 262(2):331-337.
    [106] Ahmed J, Kumar A, Parikh K, et al. Use of broad-spectrum antibiotics impacts outcome in patients treated with immune checkpoint inhibitors. Oncoimmunology, 2018, 7(11):e1507670(1-6).
    [107] Hakozaki T, Okuma Y, Omori M, et al. Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol Lett, 2019, 17(3):2946-2952.
    [108] Ng KM, Aranda-Díaz A, Tropini C, et al. Recovery of the Gut Microbiota after Antibiotics Depends on Host Diet, Community Context, and Environmental Reservoirs. Cell host & microbe, 2019, 26(5):650-665.
    [109] Cougnoux A, Delmas J, Gibold L, et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut, 2016, 65(2):278-285.
    [110] Quraishi MN, Widlak M, Bhala N, et al. Systematic review with meta-analysis:the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther, 2017, 46(5):479-493.
    [111] Bajaj JS, Salzman NH, Acharya C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy:a phase 1, randomized, placebo-controlled trial. Hepatology, 2019, 70(5):1690-1703.
    [112] El-Salhy M, Hatlebakk JG, Gilja OH, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut, 2020, 69(5):859-867.
    [113] Hartstra AV, Schüppel V, Imangaliyev S, et al. Infusion of donor feces affects the gut-brain axis in humans with metabolic syndrome. Mol Metab, 2020, 42:101076-101093.
    [114] Van Lier YF, Davids M, Haverkate NJE, et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med, 2020, 12(556):8926-8937.
    [115] Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms:an open-label study. Microbiome, 2017, 5(1):10-26.
    [116] Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 2021, 371(6529):602-609.
    [117] Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science, 2021, 371(6529):595-602.
    [118] Ding X, Li QQ, Li P, et al. Fecal microbiota transplantation:a promising treatment for radiation enteritis? Radiother Oncol, 2020, 143:12-18.
    [119] Ianiro G, Rossi E, Thomas AM, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat Commun, 2020, 11(1):4333-4339.
    [120] Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 2014, 11(8):506-514.
    [121] Guarner F. Probiotics. Int J Food Microbiol, 1998, 39(3):237-238.
    [122] Hassan H, Rompola M, Glaser AW, et al. Systematic review and meta-analysis investigating the efficacy and safety of probiotics in people with cancer. Support Care Cancer, 2018, 26(8):2503-2509.
    [123] Hibberd AA, Lyra A, Ouwehand AC, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol, 2017, 4(1):e000145(1-12).
    [124] Xia C, Jiang C, Li W, et al. A phase Ⅱ randomized clinical trial and mechanistic studies using improved probiotics to prevent oral mucositis induced by concurrent radiotherapy and chemotherapy in nasopharyngeal carcinoma. Front Immunol, 2021, 12:618150(1-14).
    [125] Kaźmierczak-Siedlecka K, Folwarski M, Ruszkowski J, et al. Effects of 4 weeks of Lactobacillus plantarum 299v supplementation on nutritional status, enteral nutrition tolerance, and quality of life in cancer patients receiving home enteral nutrition-a double-blind, randomized, and placebo-controlled trial. Eur Rev Med Pharmacol Sci, 2020, 24(18):9684-9694.
    [126] Naito S, Koga H, Yamaguchi A, et al. Prevention of recurrence with epirubicin and Lactobacillus casei after transurethral resection of bladder cancer. J Urol, 2008, 179(2):485-490.
    [127] Arthur JC, Gharaibeh RZ, Uronis JM, et al. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep, 2013, 3:2868-2877.
    [128] Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document:the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 2017, 14(8):491-502.
    [129] Rafter J, Bennett M, Caderni G, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr, 2007, 85(2):488-496.
    [130] Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371):97-103.
    [131] 周青青, 蒋丰岭, 王家妮, 等. 不同饮食摄入对小鼠糖脂代谢、肠道菌群的影响. 食品研究与开发, 2021, 42(10):16-23. Zhou QQ, Jiang FL, Wang JN, et al. Effects of different dietary ingestions on glucose and lipid metabolism, intestinal microbiota in mice. Food Res Dev, 2021, 42(10):16-23(in Chinese).
    [132] Donohoe DR, Holley D, Collins LB, et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota-and butyrate-dependent manner. Cancer Discov, 2014, 4(12):1387-1397.
    [133] Donohoe DR, Collins LB, Wali A, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell, 2012, 48(4):612-626.
    [134] Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr, 2003, 133(7 suppl):2485S-2493S.
    [135] Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS, 2014, 111(6):2247-2252.
    [136] Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med, 2017, 15(1):73-90.
    [137] Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol, 2017, 3(7):921-927.
    [138] Hills R, Pontefract B, Mishcon H, et al. Gut microbiome:profound implications for diet and disease. Nutrients, 2019, 11(7):1613-1653.
    [139] Soldati L, Di Renzo L, Jirillo E, et al. The influence of diet on anti-cancer immune responsiveness. J Transl Med, 2018, 16(1):75-93.
    [140] Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science, 2018, 362(6416):776-780.
    [141] Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res, 2017, 61(1):1500902(1-21).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓寒丹,范兴丽. 肠道菌群在肿瘤发生发展及免疫治疗中作用的研究进展[J]. 生物工程学报, 2022, 38(6): 2105-2119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-13
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第6362366位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司