新冠病毒主蛋白酶小分子抑制剂荧光共振能量转移高通量筛选模型的优化与应用
作者:
基金项目:

国家自然科学基金(81370087,81703546);安徽省自然科学基金(1808085QH265);安徽省高等学校自然科学研究项目(KJ2019ZD30,KJ2021A0839,YJS20210549);皖南医学院大学生科研资助金(WK2021XS54);皖南医学院青年骨干人才项目(wyqnyx202104)


Discovery of SARS-CoV-2 main protease inhibitors using an optimized FRET-based high-throughput screening assay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于荧光共振能量转移(fluorescence resonance energy transfer,FRET)原理,以新冠病毒主蛋白酶(main protease,Mpro)为靶标,建立并应用Mpro小分子抑制剂FRET高通量筛选模型,以期快速筛选新型Mpro小分子抑制剂。利用大肠杆菌原核表达与分离纯化高活性的Mpro,再以FRET法进行比活力测定。基于FRET原理,以7-甲氧基香豆素-4-乙酸(7-methoxycoumarin-4-acetic acid,MCA)与2,4-二硝基苯酚(2,4-dinitropheno,Dnp)标记的多肽作为Mpro水解底物,通过优化反应缓冲液、Mpro反应浓度、反应温度与时间及DMSO耐受浓度,建立并应用Mpro小分子抑制剂FRET高通量筛选模型进行苗头化合物的筛选。利用大肠杆菌实现了高活性Mpro的原核表达与分离纯化,且比活力不低于40 000 U/mg。通过一系列优化实验,使用0.4 μmol/L Mpro与5 μmol/L底物建立了Z'因子值为0.79的Mpro小分子抑制剂FRET高通量筛选模型,且反应体系中含有的二硫苏糖醇(1,4-dithiothreitol,DTT)是影响FRET筛选模型可靠性的重要因素。通过对天然产物化合物库进行高通量筛选,发现白花丹素与银杏酸在体外对Mpro酶活性具有良好的抑制作用。本研究建立了基于FRET原理的Mpro小分子抑制剂高通量筛选模型,初步证实了白花丹素与银杏酸是一类新型苗头化合物,为抗新型冠状病毒药物先导化合物的筛选与发现奠定了基础。

    Abstract:

    For rapid discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors, an optimized fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay was developed. The recombinant Mpro was expressed in Escherichia coli Rosetta (DE3) cells and the specific activity of purified Mpro was assessed by a FERT assay using a fluorescently labeled substrate. Subsequently, the reaction buffer, working concentration of Mpro, incubation temperature and length, and DMSO tolerance were systematically optimized. The Mpro was solubly expressed in E. coli cells and exhibited an expected enzymatic activity (40 000 U/mg) in a FRET assay. Through these systematic optimizations, we selected 0.4 μmol/L Mpro and 5 μmol/L FRET substrate as the optimal working concentrations in this FRET screening assay, and a high Z' factor of 0.79 was achieved. More importantly, the addition of reducing reagent 1,4-dithiothreitol in reaction buffer is necessary to faithfully assess the reliability of the screening assay. Using this assay, plumbagin (PLB) and ginkgolic acid (GA) were identified as potential Mpro inhibitors in vitro from a natural product library. In summary, we developed an optimized FRET-based HTS assay for the discovery of Mpro inhibitors, and PLB and GA could serve as the promissing lead compounds to generate more potent antiviral agents targeting SARS-CoV-2 Mpro.

    参考文献
    [1] Zheng J. SARS-CoV-2:an emerging coronavirus that causes a global threat. Int J Biol Sci, 2020, 16(10):1678-1685.
    [2] Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike:evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020, 182(4):812-827.e19.
    [3] Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of covid-19 vaccines against the B.1.617.2(delta) variant. N Engl J Med, 2021, 385(7):585-594.
    [4] Shang J, Wan YS, Luo CM, et al. Cell entry mechanisms of SARS-CoV-2. PNAS, 2020, 117(21):11727-11734.
    [5] Anirudhan V, Lee H, Cheng H, et al. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol, 2021, 93(5):2722-2734.
    [6] Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811):289-293.
    [7] Jin Z, Wang H, Duan Y, et al. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun, 2021, 538:63-71.
    [8] Zhu W, Shyr Z, Lo DC, et al. Viral proteases as targets for coronavirus disease 2019 drug development. J Pharmacol Exp Ther, 2021, 378(2):166-172.
    [9] Ma CL, Wang J. Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors. PNAS, 2021, 118(8):e2024420118.
    [10] Ma CL, Hu YM, Townsend JA, et al. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol Transl Sci, 2020, 3(6):1265-1277.
    [11] 陈云雨, 付正豪, 闫干干, 等. 基于密码子优化策略的新型冠状病毒主蛋白酶在大肠杆菌中的表达条件优化与活性鉴定. 生物工程学报, 2021, 37(4):1334-1345. Chen YY, Fu ZH, Yan GG, et al. Optimization of expression conditions and determination the proteolytic activity of codon-optimized SARS-CoV-2 main protease in Escherichia coli. Chin J Biotech, 2021, 37(4):1334-1345(in Chinese).
    [12] Chen Y, Fu Z, Li D, et al. Optimizations of a novel fluorescence polarization-based high-throughput screening assay for β-catenin/LEF1 interaction inhibitors. Anal Biochem, 2021, 612:113966.
    [13] Amporndanai K, Meng X, Shang W, et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat Commun, 2021, 12(1):3061.
    [14] Su HX, Yao S, Zhao WF, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin, 2020, 41(9):1167-1177.
    [15] Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem, 2021, 36(1):497-503.
    [16] Hung HC, Ke YY, Huang SY, et al. Discovery of M protease inhibitors encoded by SARS-CoV-2. Antimicrob Agents Chemother, 2020, 64(9):e00872-20.
    [17] Vuong W, Khan MB, Fischer C, et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun, 2020, 11(1):4282.
    [18] Fu L, Ye F, Feng Y, et al. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun, 2020, 11(1):4417.
    [19] 戚海燕, 闫干干, 付正豪, 等. 新型冠状病毒主蛋白酶抑制剂的筛选方法研究进展. 生命的化学, 2021, 41(2):207-214. Qi HY, Yan GG, Fu ZH, et al. Miniaturized high-throughput screening assays for the discovery of SARS-CoV-2 main protease inhibitors. Chem Life, 2021, 41(2):207-214(in Chinese).
    [20] Imani M, Mohajeri N, Rastegar M, et al. Recent advances in FRET-based biosensors for biomedical applications. Anal Biochem, 2021, 630:114323.
    [21] Panichayupakaranant P, Ahmad MI. Plumbagin and its role in chronic diseases. Adv Exp Med Biol, 2016, 929:229-246.
    [22] Roy A. Plumbagin:a potential anti-cancer compound. Mini Rev Med Chem, 2021, 21(6):731-737.
    [23] 付正豪, 闫干干, 朱小红, 等. 靶向β-catenin/TCF4相互作用小分子抑制剂酶联免疫吸附法高通量筛选模型的优化与应用. 生物工程学报, 2021, 37(8):2878-2889. Fu ZH, Yan GG, Zhu XH, et al. Optimizations of an ELISA-like high-throughput screening assay for the discovery of β-catenin/TCF4 interaction antagonists. Chin J Biotech, 2021, 37(8):2878-2889(in Chinese).
    [24] Borenstein R, Hanson BA, Markosyan RM, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep, 2020, 10(1):4746.
    [25] Campos D, Navarro S, Llamas-González YY, et al. Broad antiviral activity of ginkgolic acid against chikungunya, mayaro, una, and zika viruses. Viruses, 2020, 12(4):449.
    [26] Chen ZN, Cui QH, Cooper L, et al. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci, 2021, 11(1):45.
    [27] Xiong Y, Zhu GH, Wang HN, et al. Discovery of naturally occurring inhibitors against SARS-CoV-23CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia, 2021, 152:104909.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫干干,李东升,戚海燕,付正豪,刘晓平,张晶,陈云雨. 新冠病毒主蛋白酶小分子抑制剂荧光共振能量转移高通量筛选模型的优化与应用[J]. 生物工程学报, 2022, 38(6): 2236-2249

复制
分享
文章指标
  • 点击次数:411
  • 下载次数: 1749
  • HTML阅读次数: 2166
  • 引用次数: 0
历史
  • 收稿日期:2021-08-28
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司