利用植物质体转基因技术高效表达抗人源白介素6单链抗体
作者:
基金项目:

国家自然科学基金(32071477);湖北省引智创新示范基地(2019BJH021)


High-level expression of anti-interleukin-6 single chain variable fragment through plastid transformation technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    白介素6(interleukin-6,IL-6)是与包括癌症在内的多种疾病相关的一种多功能细胞因子,免疫疗法利用抗人源IL-6抗体来治疗相关疾病取得了很好的治疗效果。植物作为生物反应器可以有效降低药用蛋白的生产成本,同时积累功能蛋白。通过基因枪轰击和再生筛选,得到了2个在烟草质体中表达了鼠源抗人源IL-6单链抗体(single chain variable fragment,scFv)的独立株系,并用Southern blotting鉴定了质体转化烟草的同质化状态。抗人源IL-6 scFv基因在质体转基因烟草中成功转录和翻译,功能性抗人源IL-6 scFv在质体转基因烟草叶片中的含量占到总可溶性蛋白的1%,达到41 mg/kg鲜重。另外,质体转基因烟草的表型与野生型烟草相比并没有显著差异,它们具有相似的生长速率、成熟植株的株高以及果荚数目。抗人源IL-6 scFv的高表达量也表明了利用质体转基因植物低成本生产scFv的潜力。

    Abstract:

    Interleukin-6 (IL-6) is a pleiotropic cytokine which participates in the pathogenesis of a variety of clinical disorders, including many kinds of cancers. Anti-IL-6 antibody was proved to be useful for the immunotherapy of various inflammatory diseases. Plants are low-cost platforms for producing specific proteins of therapeutic interest. Two dependent transplastomic tobacco lines expressing murine anti-IL-6 single chain variable fragment (scFv) were generated after bombardment and regeneration, homoplasmy was then verified by Southern blotting analysis. The anti-IL-6 scFv gene was successfully expressed at both transcriptional and translational levels in transplastomic tobacco plants. Functional anti-IL-6 scFv accumulated to 1% of total soluble proteins, namely 41 mg/kg fresh weight. There was no obvious phenotypic difference between the wild-type and the transplastomic tobacco plants, including the growth rate, the height of mature plants and the number of siliques. The high-level expression of anti-IL-6 scFv indicates the potential for cost-effective production of scFV using transplastomic plants.

    参考文献
    [1] Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol, 1993, 54:1-78.
    [2] Kallen KJ, Zum Büschenfelde KH, Rose-John S. The therapeutic potential of interleukin-6 hyperagonists and antagonists. Expert Opin Investig Drugs, 1997, 6(3):237-266.
    [3] Kumari N, Dwarakanath BS, Das A, et al. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol, 2016, 37(9):11553-11572.
    [4] Araki M, Aranami T, Matsuoka T, et al. Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod Rheumatol, 2013, 23(4):827-831.
    [5] Liang B, Song Z, Wu B, et al. Evaluation of anti-IL-6 monoclonal antibody therapy using murine type II collagen-induced arthritis. J Inflamm (Lond), 2009, 6:10.
    [6] Bayliss TJ, Smith JT, Schuster M, et al. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther, 2011, 11(12):1663-1668.
    [7] Suzuki K, Ogura M, Abe Y, et al. Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. Int J Hematol, 2015, 101(3):286-294.
    [8] Satheeshkumar PK. Expression of single chain variable fragment (scFv) molecules in plants:a comprehensive update. Mol Biotechnol, 2020, 62(3):151-167.
    [9] Robić G. Challenges in electrochemical pre-purification of recombinant proteins from green plant tissues. Bioengineered, 2013, 4(2):95-96.
    [10] Fox JL. First plant-made biologic approved. Nat Biotechnol, 2012, 30(6):472.
    [11] Altpeter F, Baisakh N, Beachy R, et al. Particle bombardment and the genetic enhancement of crops:myths and realities. Mol Breed, 2005, 15(3):305-327.
    [12] Ruf S, Karcher D, Bock R. Determining the transgene containment level provided by chloroplast transformation. PNAS, 2007, 104(17):6998-7002.
    [13] Oey M, Lohse M, Kreikemeyer B, et al. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J, 2009, 57(3):436-445.
    [14] Chebolu S, Daniell H. Chloroplast-derived vaccine antigens and biopharmaceuticals:expression, folding, assembly and functionality. Curr Top Microbiol Immunol, 2009, 332:33-54.
    [15] Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines, 2010, 9(8):893-911.
    [16] Hoelscher M, Tiller N, Teh AY, et al. High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Mol Biol, 2018, 97(4/5):357-370.
    [17] Daniell H, Chan HT, Pasoreck EK. Vaccination via chloroplast genetics:affordable protein drugs for the prevention and treatment of inherited or infectious human diseases. Annu Rev Genet, 2016, 50:595-618.
    [18] Ehsani P, Meunier A, Nato F, et al. Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants. Plant Mol Biol, 2003, 52(1):17-29.
    [19] Wu Y, You L, Li S, et al. In vivo assembly in Escherichia coli of transformation vectors for plastid genome engineering. Front Plant Sci, 2017, 21(8):1454.
    [20] Kwon KC, Chan HT, León IR, et al. Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol, 2016, 172(1):62-77.
    [21] Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. PNAS, 1993, 90(3):913-917.
    [22] Caroca R, Howell KA, Hasse C, et al. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J, 2013, 73(3):368-379.
    [23] Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J, 2007, 49(2):276-288.
    [24] Cahoon EB, Shanklin J, Ohlrogge JB. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. PNAS, 1992, 89(23):11184-11188.
    [25] Fuentes I, Karcher D, Bock R. Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. Curr Biol, 2012, 22(9):763-771.
    [26] Lu Y, Rijzaani H, Karcher D, et al. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. PNAS, 2013, 110(8):E623-632.
    [27] Zhou F, Badillo-Corona JA, Karcher D, et al. High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J, 2008, 6(9):897-913.
    [28] Yusibov V, Kushnir N, Streatfield SJ. Antibody production in plants and green algae. Annu Rev Plant Biol, 2016, 67:669-701.
    [29] 董文博, 陈洪栋, 郝建国, 等. 用于药用蛋白生产的外源表达系统. 基因组学与应用生物学, 2009, 28(4):10. Dong WB, Chen HD, Hao JG, et al. Heterologous expression systems for the production of recombinant therapeutic protein, Genom Appl Biol, 2009, 28(4):793-802(in Chinese).
    [30] Rup B, Alon S, Amit-Cohen BC, et al. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-the taliglucerase alfa story. PLoS One, 2017, 12(10):e0186211.
    [31] Lonoce C, Marusic C, Morrocchi E, et al. Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures. Biotechnol J, 2019, 14(3):e1800081.
    [32] Ma JK, Drossard J, Lewis D, et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J, 2015, 13(8):1106-1120.
    [33] Sack M, Rademacher T, Spiegel H, et al. From gene to harvest:insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol J, 2015, 13(8):1094-1105.
    [34] Kaldis A, Ahmad A, Reid A, et al. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol J, 2013, 11(5):535-545.
    [35] Richter LJ, Thanavala Y, Arntzen CJ, et al. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol, 2000, 18(11):1167-1171.
    [36] Ralph Bock. Cell and Molecular Biology of Plastids:Structure, Function, and Inheritance of Plastid Genomes. Verlag Berlin Heidelberg:Springer, 2007:29-63.
    [37] Zoschke R, Bock R. Chloroplast translation:structural and functional organization, operational control, and regulation. Plant Cell, 2018, 30(4):745-770.
    [38] Cilia LC, Lelivelt MS, Mccabe CA, et al. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol, 2005, 58:763-774.
    [39] Kwon KC, Sherman A, Chang WJ, et al. Expression and assembly of largest foreign protein in chloroplasts:oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol J, 2018, 16(6):1148-1160.
    [40] Ruf S, Hermann M, Berger IJ, et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol, 2001, 19(9):870-875.
    [41] Nugent GD, Ten Have M, Van Der Gulik A, et al. Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep, 2005, 24(6):341-349.
    [42] Valkov VT, Gargano D, Manna C, et al. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5ʹ and 3ʹ regulatory sequences. Transgenic Res, 2011, 20(1):137-151.
    [43] Scotti N, Valkov VT, Cardi T. Improvement of plastid transformation efficiency in potato by using vectors with homologous flanking sequences. GM Crops, 2011, 2(2):89-91.
    [44] Dufourmantel N, Tissot G, Goutorbe F, et al. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol, 2005, 58(5):659-668.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴梦婷,王海涛,张淼,许文博,张望,李圣纯. 利用植物质体转基因技术高效表达抗人源白介素6单链抗体[J]. 生物工程学报, 2022, 38(6): 2269-2280

复制
分享
文章指标
  • 点击次数:359
  • 下载次数: 1934
  • HTML阅读次数: 1424
  • 引用次数: 0
历史
  • 收稿日期:2021-11-23
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第6453626位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司