新型三明治样荧光偏振筛选模型在新型冠状病毒主蛋白酶小分子抑制剂筛选中的应用
作者:
基金项目:

国家自然科学基金(81703546);安徽省自然科学基金(1808085QH265);安徽省高等学校自然科学研究项目(KJ2019ZD30,KJ2021A0839,YJS20210549);皖南医学院青年骨干人才项目(wyqnyx202104)


Identifying SARS-CoV-2 main protease inhibitors by a novel sandwich-like fluorescence polarization screening assay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    新型冠状病毒主蛋白酶(main protease,Mpro)通过水解多聚蛋白质体(polyprotein)调控病毒基因组RNA复制,且人体不存在其同源蛋白酶,这使Mpro成为抗新型冠状病毒药物开发的理想靶标之一。本研究基于荧光偏振技术(fluorescence polarization,FP)和生物素-亲和素反应(biotin-avidin system,BAS)原理,成功地建立了三明治样荧光偏振筛选模型用于Mpro小分子抑制剂的快速筛选。通过对天然产物化合物库进行高通量筛选,发现了漆树酸(anacardic acid,AA)是Mpro的竞争型抑制剂,1,2,3,4,6-O-五没食子酰葡萄糖(1,2,3,4,6-O-pentagalloylglucose,PGG)是Mpro的混合型抑制剂,且已报道的部分抑制剂是非特异性Mpro小分子抑制剂。文中建立的三明治样荧光偏振筛选模型具有良好的简便性、灵敏性和稳定性,初步证实了漆树酸和PGG是一类新型苗头化合物,建立科学严谨的活性评价体系对于抗新型冠状病毒药物的筛选与发现是至关重要的。

    Abstract:

    SARS-CoV-2 main protease (Mpro) is responsible for polyprotein cleavage to release non-structural proteins (nsps) for viral genomic RNA replication, and its homologues are absent in human cells. Therefore, Mpro has been regarded as one of the ideal drug targets for the treatment of coronavirus disease 2019 (COVID-19). In this study, we first combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) to develop a novel sandwich-like FP screening assay for quick discovery of SARS-CoV-2 Mpro inhibitors from a natural product library. With this screening assay, anacardic acid (AA) and 1,2,3,4,6-O-pentagalloylglucose (PGG) were found to be the competitive inhibitor and mixed-type inhibitor targeting Mpro, respectively. Importantly, our results showed that the majority of the reported Mpro inhibitors are promiscuous cysteine inhibitors that are not specific to Mpro. In summary, this novel sandwich-like FP screening assay is simple, sensitive, and robust, which is ideal for large-scale screening. Natural products AA and PGG will be the promising lead compounds for generating more potent antiviral agents targeting Mpro, and the stringent hit validation at the early stage of drug discovery is urgently needed.

    参考文献
    [1] Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602(7898):657-663.
    [2] Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2Omicron to antibody neutralization. Nature, 2022, 602(7898):671-675.
    [3] Gao SJ, Guo HT, Luo GX. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert!. J Med Virol, 2022, 94(4):1255-1256.
    [4] Torjesen I. Covid-19:Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ, 2021, 375:n2943. DOI:10.1136/bmj.n2943.
    [5] Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, et al. ACE2:the molecular doorway to SARS-CoV-2. Cell Biosci, 2020, 10(1):148.
    [6] Jin ZM, Wang HF, Duan YK, et al. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun, 2021, 538:63-71.
    [7] Anirudhan V, Lee H, Cheng H, et al. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol, 2021, 93(5):2722-2734.
    [8] Faheem, Kumar BK, Sekhar KVGC, et al. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem, 2020, 104:104269.
    [9] Zhu W, Shyr Z, Lo DC, et al. Viral proteases as targets for coronavirus disease 2019 drug development. J Pharmacol Exp Ther, 2021, 378(2):166-172.
    [10] Zhao ZY, Li YD, Zhou LY, et al. Prevention and treatment of COVID-19 using Traditional Chinese Medicine:a review. Phytomedicine, 2021, 85:153308.
    [11] Lyu M, Fan GW, Xiao GX, et al. Traditional Chinese Medicine in COVID-19. Acta Pharm Sin B, 2021, 11(11):3337-3363.
    [12] Wang WY, Xie Y, Zhou H, et al. Contribution of traditional Chinese medicine to the treatment of COVID-19. Phytomedicine, 2021, 85:153279.
    [13] Yan GG, Li DS, Lin Y, et al. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Cell Biosci, 2021, 11(1):199.
    [14] 陈云雨, 付正豪, 闫干干, 等. 基于密码子优化策略的新型冠状病毒主蛋白酶在大肠杆菌中的表达条件优化与活性鉴定. 生物工程学报, 2021, 37(4):1334-1345. Chen YY, Fu ZH, Yan GG, et al. Optimization of expression conditions and determination the proteolytic activity of codon-optimized SARS-CoV-2 main protease in Escherichia coli. Chin J Biotech, 2021, 37(4):1334-1345(in Chinese).
    [15] 闫干干, 李东升, 戚海燕, 等. 新型冠状病毒主蛋白酶小分子抑制剂荧光共振能量转移高通量筛选模型的优化与应用. 生物工程学报, 2022, 38(6):1-15.. Yan GG, Li DS, Qi HY, et al. Discovery of SARS-CoV-2 main protease inhibitors using an optimized FRET-based high-throughput screening assay. Chin J Biotech, 2022, 38(6):1-15(in Chinese).
    [16] Ma C, Tan H, Choza J, et al. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B, 2022, 12(4):1636-1651.
    [17] Vuong W, Khan MB, Fischer C, et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun, 2020, 11(1):4282.
    [18] Chen ZN, Cui QH, Cooper L, et al. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci, 2021, 11(1):45.
    [19] Coelho C, Gallo G, Campos CB, et al. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One, 2020, 15(10):e0240079.
    [20] Jin ZM, Du XY, Xu YC, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811):289-293.
    [21] Liu HB, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem, 2021, 36(1):497-503.
    [22] Xiao T, Cui MQ, Zheng CJ, et al. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front Pharmacol, 2021, 12:669642.
    [23] Li Z, Li X, Huang YY, et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. PNAS, 2020, 117(44):27381-27387.
    [24] Ghahremanpour MM, Tirado-Rives J, Deshmukh M, et al. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med Chem Lett, 2020, 11(12):2526-2533.
    [25] Mahdi M, Mótyán JA, Szojka ZI, et al. Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2's main protease. Virol J, 2020, 17(1):190.
    [26] Karim S, Karim QA. Omicron SARS-CoV-2 variant:a new chapter in the COVID-19 pandemic. Lancet, 2021, 398(10317):2126-2128.
    [27] Callaway E. Omicron likely to weaken COVID vaccine protection. Nature, 2021, 600(7889):367-368.
    [28] Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect, 2022, 11(1):337-343.
    [29] Rae M. Omicron:a failure to act with a global focus will continue the proliferation of new variants of covid-19. BMJ, 2021, 375:n3095. DOI:10.1136/bmj. n3095.
    [30] Hale VL, Dennis PM, McBride DS, et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature, 2022, 602(7897):481-486.
    [31] Loschwitz J, Jäckering A, Keutmann M, et al. Novel inhibitors of the main protease enzyme of SARS-CoV-2 identified via molecular dynamics simulation-guided in vitro assay. Bioorg Chem, 2021, 111:104862.
    [32] Zhu W, Xu M, Chen CZ, et al. Identification of SARS-CoV-23CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacol Transl Sci, 2020, 3(5):1008-1016.
    [33] Ihssen J, Faccio G, Yao CY, et al. Fluorogenic in vitro activity assay for the main protease Mpro from SARS-CoV-2 and its adaptation to the identification of inhibitors. STAR Protoc, 2021, 2(3):100793.
    [34] Rawson JMO, Duchon A, Nikolaitchik OA, et al. Development of a cell-based luciferase complementation assay for identification of SARS-CoV-23CLpro inhibitors. Viruses, 2021, 13(2):173.
    [35] Froggatt HM, Heaton BE, Heaton NS. Development of a fluorescence-based, high-throughput SARS-CoV-23CLpro reporter assay. J Virol, 2020, 94(22):e01265-e01220.
    [36] Riva L, Yuan SF, Yin X, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827):113-119.
    [37] 戚海燕, 闫干干, 付正豪, 等. 新型冠状病毒主蛋白酶抑制剂的筛选方法研究进展. 生命的化学, 2021, 41(2):207-214. Qi HY, Yan GG, Fu ZH, et al. Miniaturized high-throughput screening assays for the discovery of SARS-CoV-2 main protease inhibitors. Chem Life, 2021, 41(2):207-214(in Chinese).
    [38] Lea WA, Simeonov A. Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov, 2011, 6(1):17-32.
    [39] Chen YY, Fu ZH, Li DS, et al. Optimizations of a novel fluorescence polarization-based high-throughput screening assay for β-catenin/LEF1 interaction inhibitors. Anal Biochem, 2021, 612:113966.
    [40] 牛夏忆, 韩茂椿, 李淼, 等. 重组人β-catenin原核表达条件的优化及生物学活性鉴定. 微生物学杂志, 2020, 40(1):58-66. Niu XY, Han MC, Li M, et al. Optimization of prokaryotic expression conditions and biological activity identification of recombinant human β-catenin. J Microbiol, 2020, 40(1):58-66(in Chinese).
    [41] Raysyan A, Moerer R, Coesfeld B, et al. Fluorescence polarization immunoassay for the determination of diclofenac in wastewater. Anal Bioanal Chem, 2021, 413(4):999-1007.
    [42] Yaroslavsky AN, Feng X, Muzikansky A, et al. Fluorescence polarization of methylene blue as a quantitative marker of breast cancer at the cellular level. Sci Rep, 2019, 9(1):940.
    [43] Levine LM, Michener ML, Toth MV, et al. Measurement of specific protease activity utilizing fluorescence polarization. Anal Biochem, 1997, 247(1):83-88.
    [44] Behnam MAM, Klein CD. Inhibitor potency and assay conditions:a case study on SARS-CoV-2 main protease. PNAS, 2021, 118(36):e2106095118.
    [45] Saedtler M, Förtig N, Ohlsen K, et al. Antibacterial anacardic acid derivatives. ACS Infect Dis, 2020, 6(7):1674-1685.
    [46] Park M, Upton D, Blackmon M, et al. Anacardic acid inhibits pancreatic cancer cell growth, and potentiates chemotherapeutic effect by Chmp1A-ATM-p53 signaling pathway. BMC Complement Altern Med, 2018, 18(1):71.
    [47] Zhao KX, Jia YW, Peng JX, et al. Anacardic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. FASEB J, 2019, 33(8):9100-9115.
    [48] Hundt J, Li ZB, Liu Q. The inhibitory effects of anacardic acid on hepatitis C virus life cycle. PLoS One, 2015, 10(2):e0117514.
    [49] 王维聪, 王潮, 宋学英, 等. 44种中药中1,2,3,4,6-五-O-倍酰-D-葡萄糖含量的测定. 中国中药杂志, 2008, 33(6):656-659. Wang WC, Wang C, Song XY, et al. Determination of 1,2,3,4,6-penta-O-galloyl-D-glucose in forty four kinds of Chinese traditional medicines by HPLC. China J Chin Mater Med, 2008, 33(6):656-659(in Chinese).
    [50] Chen RH, Yang LJ, Hamdoun S, et al. 1,2,3,4,6-pentagalloyl glucose, a RBD-ACE2 binding inhibitor to prevent SARS-CoV-2 infection. Front Pharmacol, 2021, 12:634176.
    相似文献
    引证文献
引用本文

闫浩浩,闫干干,戚海燕,刘志成,刘晓丽,刘晓平,李霓,陈云雨. 新型三明治样荧光偏振筛选模型在新型冠状病毒主蛋白酶小分子抑制剂筛选中的应用[J]. 生物工程学报, 2022, 38(6): 2352-2364

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-27
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司