植物GLKs生物学功能及分子作用机理研究进展
作者:
基金项目:

国家自然科学基金(31871605);浙江省自然科学基金(LD19C130001)


Biological function and molecular mechanism of the transcription factor GLKs in plants: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    GLKs (GOLDEN 2-LIKEs)是一类植物特有的转录因子,靶向调控光合作用相关基因的表达,调控叶绿体的发育、分化并维持其机能,并参与调节果实的营养积累、叶片衰老、免疫反应及逆境胁迫应答等。GLKs受多种激素或环境因子的影响,是植物细胞调控网络的关键节点,也是改造作物光合能力的重要基因。基于国内外在植物GLKs研究中取得的众多进展,文中全面阐述了GLKs基因的生物学功能、分子机制及其育种实践,并构建GLKs介导的信号网络模型,为后期GLKs的理论与应用研究提供借鉴。

    Abstract:

    GLKs (GOLDEN 2-LIKEs) are a group of plant-specific transcription factors regulating the chloroplast biogenesis, differentiation and function maintains by triggering the expression of the photosynthesis-associated nuclear genes (PhANGs). The GLKs also play important roles in nutrient's accumulation in fruits, leaf senescence, immunity and abiotic stress response. The expression of GLK genes were affected by multiple hormones or environmental factors. Therefore, GLKs were considered as the key nodes of regulatory network in plant cells, and potential candidates to improve the photosynthetic capacity of crops. Since numerous researches of GLKs have been reported in plants, the biological function, molecular mechanism of GLKs genes and its applications in breeding were summarized and a GLK-mediated signaling network model was developed. This review may facilitate future research and application of GLKs.

    参考文献
    [1] Jarvis P, López-Juez E.Biogenesis and homeostasis of chloroplasts and other plastids.Nat Rev Mol Cell Biol, 2013, 14(12):787-802.
    [2] Fernandez JC, Burch-Smith TM.Chloroplasts as mediators of plant biotic interactions over short and long distances.Curr Opin Plant Biol, 2019, 50:148-155.
    [3] 李保珠,赵孝亮,彭雷.植物叶绿体发育及调控研究进展.植物学报, 2014, 49(3):337-345.Li BZ, Zhao XL, Peng L.Research advances in the development and regulation of plant chloroplasts.Chin Bull Bot, 2014, 49(3):337-345(in Chinese).
    [4] Jenkins MT.A second gene producing golden plant color in maize.Am Nat, 1926, 60(670):484-488.
    [5] Hall LN, Rossini L, Cribb L, et al.Golden 2:a novel transcriptional regulator of cellular differentiation in the maize leaf.Plant Cell, 1998, 10(6):925-936.
    [6] Rossini L, Cribb L, Martin DJ, et al.The maize golden 2 gene defines a novel class of transcriptional regulators in plants.Plant Cell, 2001, 13(5):1231-1244.
    [7] Bravo-Garcia A, Yasumura Y, Langdale JA.Specialization of the golden 2-like regulatory pathway during land plant evolution.New Phytol, 2009, 183(1):133-141.
    [8] Waters MT, Wang P, Korkaric M, et al.GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis.Plant Cell, 2009, 21(4):1109-1128.
    [9] Nakamura H, Muramatsu M, Hakata M, et al.Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells.Plant Cell Physiol, 2009, 50(11):1933-1949.
    [10] Powell ALT, Nguyen CV, Hill T, et al.Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development.Science, 2012, 336(6089):1711-1715.
    [11] Brand A, Borovsky Y, Hill T, et al.CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit.Theor Appl Genet, 2014, 127(10):2139-2148.
    [12] Ali N, Chen H, Zhang C, et al.Ectopic expression of AhGLK1b(golden 2-like transcription factor) in Arabidopsis confers dual resistance to fungal and bacterial pathogens.Genes, 2020, 11(3):343.
    [13] Pan YL, Pan Y, Qu CM, et al.Identification and cloning of Golden 2-like1(GLK1), a transcription factor associated with chloroplast development in Brassica napus L..Genet Mol Res, 2017, 16(1).
    [14] Yeh SY, Lin HH, Chang YM, et al.Maize golden 2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield.Plant Physiol, 2022, 188(1):442-459.
    [15] Liu X, Li LM, Li MJ, et al.AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought.Sci Rep, 2018, 8(1):2250.
    [16] Murmu J, Wilton M, Allard G, et al.Arabidopsis golden 2-like (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea.Mol Plant Pathol, 2014, 15(2):174-184.
    [17] Nagatoshi Y, Mitsuda N, Hayashi M, et al.Golden 2-like transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement.PNAS, 2016, 113(15):4218-4223.
    [18] Kobayashi K, Baba S, Obayashi T, et al.Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis.Plant Cell, 2012, 24(3):1081-1095.
    [19] Rauf M, Arif M, Dortay H, et al.ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription.EMBO Rep, 2013, 14(4):382-388.
    [20] Savitch LV, Subramaniam R, Allard GC, et al.The GLK1'regulon'encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis.Biochem Biophys Res Commun, 2007, 359(2):234-238.
    [21] Nguyen CV, Vrebalov JT, Gapper NE, et al.Tomato golden 2-like transcription factors reveal molecular gradients that function during fruit development and ripening.Plant Cell, 2014, 26(2):585-601.
    [22] Nadakuduti SS, Holdsworth WL, Klein CL, et al.KNOX genes influence a gradient of fruit chloroplast development through regulation of golden 2-like expression in tomato.Plant J, 2014, 78(6):1022-1033.
    [23] Townsend PD, Dixon CH, Slootweg EJ, et al.The intracellular immune receptor Rx1 regulates the DNA-binding activity of a golden 2-like transcription factor.J Biol Chem, 2018, 293(9):3218-3233.
    [24] Chen M, Liu X, Jiang SH, et al.Transcriptomic and functional analyses reveal that PpGLK1 regulates chloroplast development in peach (Prunus persica).Front Plant Sci, 2018, 9:34.
    [25] Zhang L, Qian JL, Han YT, et al.Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce.Plant J, 2022, 109(1):182-195.
    [26] Wang P, Fouracre J, Kelly S, et al.Evolution of GOLDEN 2-LIKE gene function in C (3) and C (4) plants.Planta, 2013, 237(2):481-495.
    [27] Chen M, Ji ML, Wen BB, et al.Golden 2-like transcription factors of plants.Front Plant Sci, 2016, 7:1509.
    [28] Wang P, Khoshravesh R, Karki S, et al.Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy.Curr Biol, 2017, 27(21):3278-3287.e6.
    [29] Li X, Wang P, Li J, et al.Maize GOLDEN 2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition.Commun Biol, 2020, 3(1):151.
    [30] 刘俊芳,张佳,李贺,等.植物GOLDEN2-Like转录因子研究进展.分子植物育种, 2017, 15(10):3949-3956.Liu JF, Zhang J, Li H, et al.Research progress of plant golden 2-like transcription factor.Mol Plant Breed, 2017, 15(10):3949-3956(in Chinese).
    [31] Fitter DW, Martin DJ, Copley MJ, et al.GLK gene pairs regulate chloroplast development in diverse plant species.Plant J, 2002, 31(6):713-727.
    [32] Waters MT, Moylan EC, Langdale JA.GLK transcription factors regulate chloroplast development in a cell-autonomous manner.Plant J, 2008, 56(3):432-444.
    [33] Langdale JA.C4 cycles:past, present, and future research on C4 photosynthesis.Plant Cell, 2011, 23(11):3879-3892.
    [34] Yasumura Y, Moylan EC, Langdale JA.A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants.Plant Cell, 2005, 17(7):1894-1907.
    [35] Fernández AP, StrandÅ.Retrograde signaling and plant stress:plastid signals initiate cellular stress responses.Curr Opin Plant Biol, 2008, 11(5):509-513.
    [36] Kakizaki T, Matsumura H, Nakayama K, et al.Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling.Plant Physiol, 2009, 151(3):1339-1353.
    [37] Kakizaki T, Yazu F, Nakayama K, et al.Plastid signalling under multiple conditions is accompanied by a common defect in RNA editing in plastids.J Exp Bot, 2012, 63(1):251-260.
    [38] Tokumaru M, Adachi F, Toda M, et al.Ubiquitin-proteasome dependent regulation of the golden 2-like 1 transcription factor in response to plastid signals.Plant Physiol, 2017, 173(1):524-535.
    [39] Tang XF, Miao M, Niu XL, et al.Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato.New Phytol, 2016, 209(3):1028-1039.
    [40] Carrara S, Pardossi A, Soldatini GF, et al.Photosynthetic activity of ripening tomato fruit.Photosynthetica, 2001, 39(1):75-78.
    [41] Lu S, Li L.Carotenoid metabolism:biosynthesis, regulation, and beyond.J Integr Plant Biol, 2008, 50(7):778-785.
    [42] Li GW, Chen DY, Tang XF, et al.Heterologous expression of kiwifruit (Actinidia chinensis) golden 2-like homolog elevates chloroplast level and nutritional quality in tomato (Solanum lycopersicum).Planta, 2018, 247(6):1351-1362.
    [43] Lupi ACD, Lira BS, Gramegna G, et al.Solanum lycopersicum golden 2-like 2 transcription factor affects fruit quality in a light-and auxin-dependent manner.PLoS One, 2019, 14(2):e0212224.
    [44] Ren ZX, Li ZG, Miao Q, et al.The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis.J Exp Bot, 2011, 62(8):2815-2826.
    [se).
    [66] Ahmad R, Liu YT, Wang TJ, et al.Golden 2-like transcription factors regulate WRKY40 expression in response to abscisic acid.Plant Physiol, 2019, 179(4):1844-1860.
    [67] Zhao DM, Zheng YX, Yang LJ, et al.The transcription factor AtGLK1 acts upstream of MYBL2 to genetically regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis.BMC Plant Biol, 2021, 21(1):242.Feller U.Nitrogen metabolism and remobilization during senescence.J Exp Bot, 2002, 53(370):927-937.
    [48] Hensel LL, Grbić V, Baumgarten DA, et al.Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis.Plant Cell, 1993, 5(5):553-564.
    [49] Seaton DD, Smith RW, Song YH, et al.Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.Mol Syst Biol, 2015, 11(1):776.
    [50] Oh E, Zhu JY, Wang ZY.Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses.Nat Cell Biol, 2012, 14(8):802-809.
    [51] Martín G, Leivar P, Ludevid D, et al.Phytochrome and retrograde signalling pathways converge to ntagonistically regulate a light-induced transcriptional network.Nat Commun, 2016, 7:11431.
    [52] Song Y, Yang CW, Gao S, et al.Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4 and 5.Mol Plant, 2014, 7(12):1776-1787.
    [53] Garapati P, Xue GP, Munné-Bosch S, et al.Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades.Plant Physiol, 2015, 168(3):1122-1139.
    [54] Zhang HY, Zhang LP, Ji YR, et al.Arabidopsis sigma factor binding protein1(SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination.J Exp Bot, 2022, 73(1):182-196.
    [55] Woodson JD, Perez-Ruiz JM, Schmitz RJ, et al.Sigma factor-mediated plastid retrograde signals control nuclear gene expression.Plant J, 2013, 73(1):1-13.
    [56] Yu XF, Li L, Zola J, et al.A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.Plant J, 2011, 65(4):634-646.
    [57] Schreiber KJ, Nasmith CG, Allard G, et al.Found in translation:high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat.Mol Plant Microbe In, 2011, 24(6):640-648.
    [58] Han XY, Li PX, Zou LJ, et al.Golden 2-like transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis.Biochem Biophys Res Commun, 2016, 477(4):626-632.
    [59] Ni FR, Wu L, Wang Q, et al.Turnip yellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis.Mol Plant, 2017, 10(5):764-766.
    [60] Lai ZB, Li Y, Wang F, et al.Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.Plant Cell, 2011, 23(10):3824-3841.
    [61] Lv RQ, Li ZH, Li MP, et al.Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant.Plant Cell, 2019, 31(1):210-230.
    [62] Li M, Lee KP, Liu T, et al.Antagonistic modules regulate photosynthesis-associated nuclear genes via golden 2-like transcription factors.Plant Physiol, 2021, kiab600.
    [63] Liu JN, Mehari TG, Xu YC, et al.GhGLK1 a key candidate gene from GARP family enhances cold and drought stress tolerance in cotton.Front Plant Sci, 2021, 12:759312.
    [64] 张立新,卢从明,彭连伟,等.利用合成生物学原理提高光合作用效率的研究进展.生物工程学报, 2017, 33(3):486-493.Zhang LX, Lu CM, Peng LW, et al.Progress in improving photosynthetic efficiency by synthetic biology.Chin J Biotech, 2017, 33(3):486-493(in Chinese).
    [65] 袁俊杰.水稻高光效基因NRPC2的生物学功能研究[D].金华:浙江师范大学, 2019.Yuan JJ.Study on the biological function of high photosynthetic gene NRPC2 in rice[D].Jinhua:Zhejiang Normal University, 2019(in Chine
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈淑容,袁俊杰,许以灵,马伯军,陈析丰. 植物GLKs生物学功能及分子作用机理研究进展[J]. 生物工程学报, 2022, 38(8): 2700-2712

复制
分享
文章指标
  • 点击次数:748
  • 下载次数: 2237
  • HTML阅读次数: 1490
  • 引用次数: 0
历史
  • 收稿日期:2022-02-11
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第6559913位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司