卵泡液细胞外囊泡携带的microRNA对卵泡闭锁影响的研究进展
作者:
基金项目:

国家科技重大专项(2016ZX08007002,2016ZX08007003)


Progress in the effect of microRNA carried by extracellular vesicles in follicular fluid on follicular atresia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细胞外囊泡(extracellular vesicles,EVs)是细胞主动释放的膜结合颗粒。在原核生物和真核生物中,EVs被认为是细胞间进行信息交流的一种方式。EVs具有携带蛋白质、脂质和核酸等生物大分子的能力,可以影响亲本细胞和受体细胞的不同生理功能。其中,EVs携带的microRNA研究报道最多,在生物体生理功能方面发挥着重要作用。卵泡在发育过程中,只有少数卵泡可以充分发育、成熟、排卵,大多数卵泡在发育的不同阶段发生闭锁。在卵泡发育的整个过程中,每一阶段的变化以及卵泡闭锁调控机制还不完全清楚。本文在总结EVs类型、特性、分离方法及用途的基础上,从不同细胞因子、激素方面重点论述了卵泡液中EVs携带的microRNA是如何调控卵泡闭锁,同时对卵泡液EVs携带的microRNA在生殖调控和生殖疾病诊断方面的研究前景进行了展望,对于卵泡发育调控研究以及有效利用研究具有一定参考意义。

    Abstract:

    Extracellular vesicles (EVs) are membrane-bound particles actively released by cells. In prokaryotes and eukaryotes, EVs are effective bridges for communication between cells. EVs carry biological macromolecules, including proteins, lipids and nucleic acid, which affects different physiological functions of parent cells and recipient cells. Among them, the microRNA carried by EVs is the most reported and plays an important role in physiological function of organisms. During the development of follicles, only a few follicles can fully develop and ovulate, whereas most of them undergo atresia at different stages of development. In the whole process of follicular development, the changes at each stage and the regulation mechanism of follicular atresia are not completely understood. In this paper, we introduced the types, characteristics, isolation methods and uses of EVs, and emphasized how microRNA carried by EVs in follicular fluid regulated follicular atresia from the aspects of different cytokines and hormones. Additionally, the application prospect of microRNA carried by EVs in follicular fluid in reproductive regulation and reproductive disease diagnosis was discussed. This paper is significant for studying the regulation of follicular development and the effective utilization of oocytes.

    参考文献
    [1] Matsuda F, Inoue N, Manabe N, et al.Follicular growth and atresia in mammalian ovaries:regulation by survival and death of granulosa cells.J Reprod Dev, 2012, 58(1):44-50.
    [2] Yu YS, Sui HS, Han ZB, et al.Apoptosis in granulosa cells during follicular atresia:relationship with steroids and insulin-like growth factors.Cell Res, 2004, 14(4):341-346.
    [3] Zhang JB, Xu YX, Liu HL, et al.microRNAs in ovarian follicular atresia and granulosa cell apoptosis.Reprod Biol Endocrinol, 2019, 17(1):9.
    [4] Vader P, Breakefield XO, Wood MJA.Extracellular vesicles:emerging targets for cancer therapy.Trends Mol Med, 2014, 20(7):385-393.
    [5] Raposo G, Stoorvogel W.Extracellular vesicles:exosomes, microvesicles, and friends.J Cell Biol, 2013, 200(4):373-383.
    [6] Colombo M, Raposo G, Théry C.Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu Rev Cell Dev Biol, 2014, 30:255-289.
    [7] Aiello A, Giannessi F, Percario ZA, et al.An emerging interplay between extracellular vesicles and cytokines.Cytokine Growth Factor Rev, 2020, 51:49-60.
    [8] Chung IM, Rajakumar G, Venkidasamy B, et al.Exosomes:current use and future applications.Clin Chim Acta, 2020, 500:226-232.
    [9] Delauzun V, Amigues B, Gaubert A, et al.Extracellular vesicles as a platform to study cell-surface membrane proteins.Methods, 2020, 180:35-44.
    [10] Becker A, Thakur BK, Weiss JM, et al.Extracellular vesicles in cancer:cell-to-cell mediators of metastasis.Cancer Cell, 2016, 30(6):836-848.
    [11] Yáñez-Mó M, Siljander PRM, Andreu Z, et al.Biological properties of extracellular vesicles and their physiological functions.J Extracell Vesicles, 2015, 4:27066.
    [12] Skotland T, Sagini K, Sandvig K, et al.An emerging focus on lipids in extracellular vesicles.Adv Drug Deliv Rev, 2020, 159:308-321.
    [13] 王亨琴,王晓梅,孟凯,等.卵泡液中细胞外囊泡及其携带的microRNA对卵泡发育的作用.生物工程学报, 2020, 36(4):632-642.Wang HQ, Wang XM, Meng K, et al.Effect of extracellular vesicles and microRNAs in follicular fluid on follicular development.Chin J Biotech, 2020, 36(4):632-642(in Chinese).
    [14] Hung WT, Hong X, Christenson LK, et al.Extracellular vesicles from bovine follicular fluid support cumulus expansion.Biol Reprod, 2015, 93(5):117.
    [15] Hailay T, Hoelker M, Poirier M, et al.Extracellular vesicle-coupled miRNA profiles in follicular fluid of cows with divergent post-calving metabolic status.Sci Rep, 2019, 9(1):12851.
    [16] Hung WT, Navakanitworakul R, Khan T, et al.Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation.Biol Reprod, 2017, 97(4):644-655.
    [17] 丁强,李亚新,陈玉林.山羊卵巢卵泡液中外泌体分离鉴定及其对颗粒细胞的影响.中国畜牧兽医学会养羊学分会会议论文集.石家庄:中国畜牧兽医, 2017:129.
    [18] Grzesiak M, Popiolek K, Knapczyk-Stwora K.Extracellular vesicles in follicular fluid of sexually mature gilts'ovarian antral follicles-identification and proteomic analysis.J Physiol Pharmacol, 2020, 71(1):2020Feb; 71(1).
    [19] Matsuno Y, Kanke T, Maruyama N, et al.Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid.PLoS One, 2019, 14(6):e0217760.
    [20] Matsuno Y, Onuma A, Fujioka YA, et al.Effects of exosome-like vesicles on cumulus expansion in pigs in vitro.J Reprod Dev, 2017, 63(1):51-58.
    [21] Simon C, Greening DW, Bolumar D, et al.Extracellular vesicles in human reproduction in health and disease.Endocr Rev, 2018, 39(3):292-332.
    [22] Machtinger R, Laurent LC, Baccarelli AA.Extracellular vesicles:roles in gamete maturation, fertilization and embryo implantation.Hum Reprod Update, 2016, 22(2):182-193.
    [23] De Almeida Monteiro Melo Ferraz M, Fujihara M, Nagashima JB, et al.Follicular extracellular vesicles enhance meiotic resumption of domestic cat vitrified oocytes.Sci Rep, 2020, 10(1):8619.
    [24] Da Silveira JC, Veeramachaneni DNR, Winger QA, et al.Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins:a possible new form of cell communication within the ovarian follicle.Biol Reprod, 2012, 86(3):71.
    [25] 付衍辉.猪卵泡闭锁过程中部分相关基因表达特征研究[D].南京:南京农业大学, 2011.Fu YH.The expression characteristics of partial gene during the porcine follicualr atresia[D].Nanjing:Nanjing Agricultural University, 2011(in Chinese).
    [26] Brzyski RG, Muasher SJ, Droesch K, et al.Follicular atresia associated with concurrent initiation of gonadotropin-releasing hormone agonist and follicle-stimulating hormone for oocyte recruitment.Fertil Steril, 1988, 50(6):917-921.
    [27] Taya K, Sasamoto S.Selective release of FSH in lactating rats during the period of follicular atresia induced by the administration of antiserum to LH-releasing hormone.J Endocrinol, 1988, 118(3):455-464.
    [28] Santonocito M, Vento M, Guglielmino MR, et al.Molecular characterization of exosomes and their microRNA cargo in human follicular fluid:bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation.Fertil Steril, 2014, 102(6):1751-1761.e1.
    [29] Ana Clara Faquineli Cavalcante Mendes DeÁvila, Bridi A, Andrade GM, et al.Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation.Biol Reprod, 2019, 102(2):362-375.
    [30] Navakanitworakul R, Hung WT, Gunewardena S, et al.Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles.Sci Rep, 2016, 6:25486.
    [31] Donadeu FX, Mohammed BT, Ioannidis J.A miRNA target network putatively involved in follicular atresia.Domest Anim Endocrinol, 2017, 58:76-83.
    [32] Sohel MMH, Hoelker M, Noferesti SS, et al.Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid:implications for bovine oocyte developmental competence.PLoS One, 2013, 8(11):e78505.
    [33] Da Silveira J, Andrade GM, Perecin F, et al.Isolation and analysis of exosomal microRNAs from ovarian follicular fluid.Methods Mol Biol, 2018, 1733:53-63.
    [34] Kamalidehghan B, Habibi M, Afjeh SS, et al.The importance of small non-coding RNAs in human reproduction:a review article.Appl Clin Genet, 2020, 13:1-11.
    [35] 梁学超,蒋明,罗玉茹,等.猪卵巢发育的组织学变化及卵泡闭锁规律研究.畜牧兽医学报, 2017, 48(10):1863-1870.Liang XC, Jiang M, Luo YR, et al.Study on histology and patterns of follicular atresia during ovarian development in pig.Chin J Animal Vet Sci, 2017, 48(10):1863-1870(in Chinese).
    [36] Andronico F, Battaglia R, Ragusa M, et al.Extracellular vesicles in human oogenesis and implantation.Int J Mol Sci, 2019, 20(9):2162.
    [37] Xu L, Sun HX, Zhang M, et al.microRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4.Mol Cell Endocrinol, 2017, 452:138-147.
    [38] Liu JY, Tu F, Yao W, et al.Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-caspase-3 pathway by targeting HAS2.Sci Rep, 2016, 6:21197.
    [39] Zhang L, Gao J, Cui S.miR-21 is involved in norepinephrine-mediated rat granulosa cell apoptosis by targeting SMAD7.J Mol Endocrinol, 2017, 58(4):199-210.
    [40] Da Silveira JC, Carnevale EM, Winger QA, et al.Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare.Reprod Biol Endocrinol, 2014, 12:44.
    [41] Yao W, Pan ZX, Du X, et al.miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter.J Cell Physiol, 2018, 233(9):6807-6821.
    [42] Li Q, Du X, Liu L, et al.Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1.Domest Anim Endocrinol, 2021, 74:106509.
    [43] Wang PJ, Liu SJ, Zhu C, et al.miR-29 regulates the function of goat granulosa cell by targeting PTX3 via the PI3K/AKT/mTOR and Erk1/2 signaling pathways.J Steroid Biochem Mol Biol, 2020, 202:105722.
    [44] Zhu WH, Yang M, Shang JN, et al.miR-222 inhibits apoptosis in porcine follicular granulosa cells by targeting the THBS1 gene.Anim Sci J, 2019, 90(6):719-727.
    [45] Chen HY, Liu C, Jiang H, et al.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells.Cell Physiol Biochem, 2017, 41(2):439-450.
    [46] Guo TY, Zhang JB, Yao W, et al.CircINHA resists granulosa cell apoptosis by upregulating CTGF as a CeRNA of miR-10a-5p in pig ovarian follicles.Biochim Biophys Acta Gene Regul Mech, 2019, 1862(10):194420.
    [47] Battaglia R, Musumeci P, Ragusa M, et al.Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles.Aging, 2020, 12(12):12324-12341.
    [48] Martinez RM, Hauser R, Liang LM, et al.Urinary concentrations of phenols and phthalate metabolites reflect extracellular vesicle microRNA expression in follicular fluid.Environ Int, 2019, 123:20-28.
    [49] Xiao GY, Cheng CC, Chiang YS, et al.Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy.Sci Rep, 2016, 6:23120.
    [50] Sun B, Ma YJ, Wang F, et al.miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis.Stem Cell Res Ther, 2019, 10(1):360.
    [51] Pasquariello R, Manzoni EFM, Fiandanese N, et al.Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence.Theriogenology, 2020, 145:77-85.
    [52] Guo TY, Huang L, Yao W, et al.The potential biological functions of circular RNAs during the initiation of atresia in pig follicles.Domest Anim Endocrinol, 2020, 72:106401.
    [53] Tesfaye D, Hailay T, Salilew-Wondim D, et al.Extracellular vesicle mediated molecular signaling in ovarian follicle:implication for oocyte developmental competence.Theriogenology, 2020, 150:70-74.
    [54] DeÁvila A, Bridi A, Andrade GM, et al.Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation.Biol Reprod, 2020, 102(2):362-375.
    [55] Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, et al.Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles.PLoS One, 2014, 9(5):e97489.
    [56] Donadeu FX, Fahiminiya S, Esteves CL, et al.Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse.Biol Reprod, 2014, 91(5):111.
    [57] 张家庆,王献伟,李文嘉,等.猪let-7a靶基因预测及生物信息学分析.家畜生态学报, 2020, 41(4):14-21.Zhang JQ, Wang XW, Li WJ, et al.Target gene prediction and bioinformatics analysis of ssc-let-7a.J Domest Animal Ecol, 2020, 41(4):14-21(in Chinese).
    [58] Zhou JL, Liu JY, Pan ZX, et al.The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor.Mol Cell Endocrinol, 2015, 409:103-112.
    [59] Chun SY, Eisenhauer KM, Minami S, et al.Hormonal regulation of apoptosis in early antral follicles:follicle-stimulating hormone as a major survival factor.Endocrinology, 1996, 137(4):1447-1456.
    [60] Cao R, Wu WJ, Zhou XL, et al.Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia.Mol Cells, 2015, 38(4):304-311.
    [61] Yao W, Wang S, Du X, et al.SMAD4 inhibits granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis.Reprod Sci, 2021:2021Jul21.
    [62] Yao W, Pan ZX, Du X, et al.NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis.J Anim Sci Biotechnol, 2021, 12(1):103.
    [63] Ma MN, Zhang JB, Gao XM, et al.miR-361-5p mediates SMAD4 to promote porcine granulosa cell apoptosis through VEGFA.Biomolecules, 2020, 10(9):1281.
    [64] Yao W, Pan ZX, Du X, et al.miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter.J Cell Physiol, 2018, 233(9):6807-6821.
    [65] Du X, Liu L, Wu WJ, et al.SMARCA2 is regulated by NORFA/miR-29c, a novel pathway related to female fertility, controls granulosa cell apoptosis.J Cell Sci, 2020:133(23):249961.
    [66] Du X, Zhang LF, Li XY, et al.TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis.Cell Death Dis, 2016, 7(11):e2476.
    [67] Liu JY, Du X, Zhou JL, et al.microRNA-26b functions as a proapoptotic factor in porcine follicular granulosa cells by targeting Sma-and Mad-related protein 4.Biol Reprod, 2014, 91(6):146.
    [68] Zhong YY, Li LY, Chen ZT, et al.MIR143 inhibits steroidogenesis and induces apoptosis repressed by H3K27me3 in granulosa cells.Front Cell Dev Biol, 2020, 8:565261.
    [69] Sen A, Prizant H, Light A, et al.Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression.PNAS, 2014, 111(8):3008-3013.
    [70] Nie MY, Yu S, Peng S, et al.miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5.Biol Reprod, 2015, 93(4):98.
    [71] Huo SW, Qi HR, Si YX, et al.microRNA 26a targets Ezh2 to regulate apoptosis in mouse ovarian granulosa cells.Syst Biol Reprod Med, 2021, 67(3):221-229.
    [72] Glamoclija V, Vilović K, Saraga-Babić M, et al.Apoptosis and active caspase-3 expression in human granulosa cells.Fertil Steril, 2005, 83(2):426-431.
    [73] Reynaud K, Driancourt MA.Oocyte attrition.Mol Cell Endocrinol, 2000, 163(1/2):101-108.
    [74] Liu JY, Li XY, Yao Y, et al.miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis.Biochim Biophys Acta Gene Regul Mech, 2018, 1861(3):246-257.
    [75] Yang ML, Lin L, Sha CL, et al.Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN.Lab Invest, 2020, 100(3):342-352.
    [76] Zhang XD, Chen YG, Yang M, et al.miR-21-5p actions at the Smad7gene during pig ovarian granulosa cell apoptosis.Anim Reprod Sci, 2020, 223:106645.
    [77] Li QQ, Du X, Liu L, et al.miR-126*is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells.Gene, 2019, 711:143953.
    [78] Zhang P, Wang J, Lang H, et al.microRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1.J Cell Biochem, 2018:2018Dec16.
    [79] Guo LW, Huang QX, Zhao J, et al.microRNA-10b promotes the apoptosis of bovine ovarian granulosa cells by targeting plasminogen activator inhibitor-1.Theriogenology, 2021, 176:206-216.
    [80] Li QQ, Du X, Pan ZX, et al.The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1.Mol Cell Endocrinol, 2018, 476:84-95.
    [81] 陈慧芳,黄绮亮,胡智超,等.外泌体microRNA在猪成熟和闭锁卵泡中的表达差异及功能分析.中国农业科学, 2021, 54(21):4664-4676.Chen HF, Huang QL, Hu ZC, et al.Expression differences and functional analysis of exosomes microRNA in porcine mature and atretic follicles.Sci Agric Sin, 2021, 54(21):4664-4676(in Chinese).
    [82] Cui ZF, Liu LB, Kwame Amevor F, et al.High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy.Front Cell Dev Biol, 2020, 8:580072.
    [83] Ma LZ, Tang XR, Guo S, et al.miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway.Theriogenology, 2020, 157:226-237.
    [84] Andreu-Vieyra CV, Habibi HR.Factors controlling ovarian apoptosis.Can J Physiol Pharmacol, 2000, 78(12):1003-1012.
    [85] Singh J, Paul A, Thakur N, et al.Localization of IGF proteins in various stages of ovarian follicular development and modulatory role of IGF-I on granulosa cell steroid production in water buffalo (Bubalus bubalis).Anim Reprod Sci, 2015, 158:31-52.
    [86] Duan CM, Xu QJ.Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions.Gen Comp Endocrinol, 2005, 142(1/2):44-52.
    [87] 姚郅璆,司文宇,方富贵.IGF系统与雌性哺乳动物生殖.生理科学进展, 2019, 50(3):211-215.Yao ZQ, Si WY, Fang FG.IGF system and reproduction in female mammals.Prog Physiol Sci, 2019, 50(3):211-215(in Chinese).
    [88] Wang XM, Meng K, Wang HQ, et al.Identification of small extracellular vesicle subtypes in follicular fluid:insights into the function and miRNA profiles.J Cell Physiol, 2021, 236(8):5633-5645.
    [89] Probert C, Dottorini T, Speakman A, et al.Communication of prostate cancer cells with bone cells via extracellular vesicle RNA:a potential mechanism of metastasis.Oncogene, 2019, 38(10):1751-1763.
    [90] Zielak-Steciwko AE, Browne JA.How to explore the function and importance of microRNAs:microRNAs expression profile and their target/pathway prediction in bovine ovarian cells.Methods Mol Biol, 2018, 1733:93-105.
    [91] Bayraktar R, Van Roosbroeck K, Calin GA.Cell-to-cell communication:microRNAs as hormones.Mol Oncol, 2017, 11(12):1673-1686.
    [92] Martinez RM, Baccarelli AA, Liang LM, et al.Body mass index in relation to extracellular vesicle-linked microRNAs in human follicular fluid.Fertil Steril, 2019, 112(2):387-396.e3.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王莹,王晓梅,赵蕴琦,吴盛辉,张涌,权富生. 卵泡液细胞外囊泡携带的microRNA对卵泡闭锁影响的研究进展[J]. 生物工程学报, 2022, 38(8): 2767-2783

复制
相关视频

分享
文章指标
  • 点击次数:285
  • 下载次数: 1585
  • HTML阅读次数: 1420
  • 引用次数: 0
历史
  • 收稿日期:2021-12-07
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第6554836位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司