c-di-GMP对大肠杆菌生物膜调控的研究进展
作者:
基金项目:

内蒙古自治区自然科学基金(2021LHMS03008)


Research progress of c-di-GMP in the regulation of Escherichia coli biofilm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    大肠杆菌生物膜是由聚集于特定介质上的大肠杆菌菌体细胞相互黏附并分泌胞外基质聚合物(extracellular polymeric substances,EPS)而产生的一种结构复杂的膜状聚集物。感染宿主后的致病性大肠杆菌在形成生物膜后会极大地逃避免疫系统以及环境中各种有害因素对其的影响,对宿主造成持续甚至致命的伤害。环二鸟苷酸(cyclic diguanosine monophosphate,c-di-GMP)是广泛存在于细菌中的第二信使,在调节生物膜形成过程中起到至关重要的作用。基于此,本文对近些年来有关c-di-GMP对大肠杆菌生物膜形成过程中菌体的运动、黏附以及EPS产生机制的研究进行了综述,以期为从c-di-GMP角度抑制大肠杆菌生物膜提供依据和思路。

    Abstract:

    Escherichia coli biofilm is a complex membrane aggregation produced by the adhesion and secretion of extracellular polymeric substances by E. coli cells aggregated on specific media. Pathogenic E. coli will evade the immune system and the impact of various harmful factors in the environment after the formation of biofilm, causing sustained and even fatal damage to the host. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger ubiquitous in bacteria and plays a crucial role in regulating biofilm formation. This paper reviewed the recent studies about the role of c-di-GMP in the movement, adhesion, and EPS production mechanism of E. coli during biofilm formation, aiming to provide a basis for inhibiting E. coli biofilm from the perspective of c-di-GMP.

    参考文献
    [1] Reisner A, Maierl M, Jörger M, et al.Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli.J Bacteriol, 2014, 196(5):931-939.
    [2] Croxen MA, Finlay BB.Molecular mechanisms of Escherichia coli pathogenicity.Nat Rev Microbiol, 2010, 8(1):26-38.
    [3] Carter MQ, Feng D, Li HH.Curli fimbriae confer shiga toxin-producing Escherichia coli a competitive trait in mixed biofilms.Food Microbiol, 2019, 82:482-488.
    [4] Carter MQ, Louie JW, Feng D, et al.Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation.Food Microbiol, 2016, 57:81-89.
    [5] 张玲艳,宋丽丽,贾伟娟,等.一株鸭源大肠埃希菌的分离鉴定及毒力基因的检测.中国病原生物学杂志, 2020, 15(2):152-157, 163.Zhang LY, Song LL, Jia WJ, et al.Isolation and identification of a duck Escherichia coli strain and detection of virulence genes.J Pathog Biol, 2020, 15(2):152-157, 163(in Chinese).
    [6] Chen XP, Ali L, Wu LY, et al.Biofilm formation plays a role in the formation of multidrug-resistant Escherichia coli toward nutrients in microcosm experiments.Front Microbiol, 2018, 9:367.
    [7] Kim HJ, Oh T, Baek SY.Multidrug resistance, biofilm formation, and virulence of Escherichia coli isolates from commercial meat and vegetable products.Foodborne Pathog Dis, 2018, 15(12):782-789.
    [8] Nadler N, Kvich L, Bjarnsholt T, et al.The discovery of bacterial biofilm in patients with muscle invasive bladder cancer.APMIS, 2021, 129(5):265-270.
    [9] Kavanaugh JS, Flack CE, Lister J, et al.Identification of extracellular DNA-binding proteins in the biofilm matrix.mBio, 2019, 10(3):e01137-e01119.
    [10] Wang Y, Reardon CP, Read N, et al.Attachment and antibiotic response of early-stage biofilms studied using resonant hyperspectral imaging.NPJ Biofilms Microbiomes, 2020, 6(1):57.
    [11] Rodrigues RS, Lima NCDS, Taborda RLM, et al.Antibiotic resistance and biofilm formation in children with Enteropathogenic Escherichia coli(EPEC) in Brazilian Amazon.J Infect Dev Ctries, 2019, 13(8):698-705.
    [12] Miranda-Estrada LI, Ruíz-Rosas M, Molina-López J, et al.Relationship between virulence factors, resistance to antibiotics and phylogenetic groups of uropathogenic Escherichia coli in two locations in Mexico.Enferm Infecc Microbiol Clin, 2017, 35(7):426-433.
    [13] Riveros M, García W, García C, et al.Molecular and phenotypic characterization of diarrheagenic Escherichia coli strains isolated from bacteremic children.Am J Trop Med Hyg, 2017, 97(5):1329-1336.
    [14] Newman DM, Barbieri NL, De Oliveira AL, et al.Characterizing avian pathogenic Escherichia coli(APEC) from colibacillosis cases, 2018.PeerJ, 2021, 9:e11025.
    [15] Bumunang EW, McAllister TA, Zaheer R, et al.Characterization of non-O157Escherichia coli from cattle faecal samples in the north-west province of South Africa.Microorganisms, 2019, 7(8):272.
    [16] Barilli E, Vismarra A, Villa Z, et al.ESβL E. coli isolated in pig's chain:genetic analysis associated to the phenotype and biofilm synthesis evaluation.Int J Food Microbiol, 2019, 289:162-167.
    [17] Hartmann R, Singh PK, Pearce P, et al.Emergence of three-dimensional order and structure in growing biofilms.Nat Phys, 2019, 15(3):251-256.
    [18] Moreira S, Brown A, Ha R, et al.Persistence of Escherichia coli in freshwater periphyton:biofilm-forming capacity as a selective advantage.FEMS Microbiol Ecol, 2012, 79(3):608-618.
    [19] Ahmed D, Islam MS, Begum YA, et al.Presence of enterotoxigenic Escherichia coli in biofilms formed in water containers in poor households coincides with epidemic seasons in Dhaka.J Appl Microbiol, 2013, 114(4):1223-1229.
    [20] Verma P, Saharan VV, Nimesh S, et al.Phenotypic and virulence traits of Escherichia coli and Salmonella strains isolated from vegetables and fruits from India.J Appl Microbiol, 2018, 125(1):270-281.
    [21] Sharma G, Sharma S, Sharma P, et al.Escherichia coli biofilm:development and therapeutic strategies.J Appl Microbiol, 2016, 121(2):309-319.
    [22] Rossi E, Cimdins A, Lüthje P, et al."It's a gut feeling" -Escherichia coli biofilm formation in the gastrointestinal tract environment.Crit Rev Microbiol, 2018, 44(1):1-30.
    [23] Mirzaei R, Mohammadzadeh R, Sholeh M, et al.The importance of intracellular bacterial biofilm in infectious diseases.Microb Pathog, 2020, 147:104393.
    [24] Liu F, Fu JY, Liu CY, et al.Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033.Microbiol Res, 2017, 196:69-79.
    [25] Horne SM, Sayler J, Scarberry N, et al.Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm.BMC Microbiol, 2016, 16(1):262.
    [26] Muras A, Mayer C, Otero-Casal P, et al.Short-chain N-acylhomoserine lactone quorum-sensing molecules promote periodontal pathogens in in vitro oral biofilms.Appl Environ Microbiol, 2020, 86(3):e01941-e01919.
    [27] García-Contreras R, Nuñez-López L, Jasso-Chávez R, et al.Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating.ISME J, 2015, 9(1):115-125.
    [28] Song S, Wood TK.The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation.Microorganisms, 2021, 9(2):386.
    [29] Nair MS, Upadhyay A, Fancher S, et al.Inhibition and inactivation of Escherichia coli O157:H7 biofilms by selenium.J Food Prot, 2018, 81(6):926-933.
    [30] Kan A, Birnbaum DP, Praveschotinunt P, et al.Congo red fluorescence for rapid in situ characterization of synthetic curli systems.Appl Environ Microbiol, 2019, 85(13):e00434-e00419.
    [31] Foletti C, Kramer RA, Mauser H, et al.Functionalized proline-rich peptides bind the bacterial second messenger c-di-GMP.Angew Chem Int Ed Engl, 2018, 57(26):7729-7733.
    [32] Kazmierczak BI.Synthesis of[32P]-c-di-GMP for diguanylate cyclase and phosphodiesterase activity determinations.Methods Mol Biol, 2017, 1657:23-29.
    [33] Jenal U, Reinders A, Lori C.Cyclic di-GMP:second messenger extraordinaire.Nat Rev Microbiol, 2017, 15(5):271-284.
    [34] Pfiffer V, Sarenko O, Possling A, et al.Genetic dissection of Escherichia coli's master diguanylate cyclase DgcE:role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system.PLoS Genet, 2019, 15(4):e1008059.
    [35] Hengge R, Galperin MY, Ghigo JM, et al.Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli.J Bacteriol, 2015, 198(1):7-11.
    [36] Herbst S, Lorkowski M, Sarenko O, et al.Transmembrane redox control and proteolysis of PdeC, a novel type of c-di-GMP phosphodiesterase.EMBO J, 2018, 37(8):e97825.
    [37] Povolotsky TL, Hengge R.Genome-based comparison of cyclic di-GMP signaling in pathogenic and commensal Escherichia coli strains.J Bacteriol, 2015, 198(1):111-126.
    [38] Sarenko O, Klauck G, Wilke FM, et al.More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli.mBio, 2017, 8(5):e01639-e01617.
    [39] Wang FB, Burrage AM, Phe control strategies.Chin J Biotech, 2020, 36(11):2287-2297(in Chinese).multiple bacterial species.Nat Commun, 2017, 8(1):960.
    [40] Laganenka L, López ME, Colin R, et al.Flagellum-mediated mechanosensing and RflP control motility state of pathogenic Escherichia coli.mBio, 2020, 11(2):e02269-e02219.
    [41] Boehm A, Kaiser M, Li H, et al.Second messenger-mediated adjustment of bacterial swimming velocity.Cell, 2010, 141(1):107-116.
    [42] Paul K, Nieto V, Carlquist WC, et al.The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism.Mol Cell, 2010, 38(1):128-139.
    [43] Fang X, Gomelsky M.A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.Mol Microbiol, 2010, 76(5):1295-1305.
    [44] Hou YJ, Yang WS, Hong Y, et al.Structural insights into the mechanism of c-di-GMP-bound YcgR regulating flagellar motility in Escherichia coli.J Biol Chem, 2020, 295(3):808-821.
    [45] Kimkes TEP, Heinemann M.How bacteria recognise and respond to surface contact.FEMS Microbiol Rev, 2020, 44(1):106-122.
    [46] Yoshihara A, Nobuhira N, Narahara H, et al.Estimation of the adhesive force distribution for the flagellar adhesion of Escherichia coli on a glass surface.Colloids Surf B Biointerfaces, 2015, 131:67-72.
    [47] Berne C, Ellison CK, Ducret A, et al.Bacterial adhesion at the single-cell level.Nat Rev Microbiol, 2018, 16(10):616-627.
    [48] Suchanek VM, Esteban-López M, Colin R, et al.Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli.Mol Microbiol, 2020, 113(4):728-739.
    [49] Agladze K, Wang X, Romeo T.Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA.J Bacteriol.2005, 187(24):8237-8246.
    [50] Steiner S, Lori C, Boehm A, et al.Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction.EMBO J, 2013, 32(3):354-368.
    [51] Raivio TL, Leblanc SKD, Price NL.The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.J Bacteriol, 2013, 195(12):2755-2767.
    [52] Zähringer F, Lacanna E, Jenal U, et al.Structure and signaling mechanism of a zinc-sensory diguanylate cyclase.Structure, 2013, 21(7):1149-1157.
    [53] Lacanna E, Bigosch C, Kaever V, et al.Evidence for Escherichia coli diguanylate cyclase DgcZ interlinking surface sensing and adhesion via multiple regulatory routes.J Bacteriol, 2016, 198(18):2524-2535.
    [54] Thongsomboon W, Serra DO, Possling A, et al.Phosphoethanolamine cellulose:a naturally produced chemically modified cellulose.Science, 2018, 359(6373):334-338.
    [55] Hengge R.Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins.Philos Trans R Soc Lond B Biol Sci, 2016, 371(1707):20150498.
    [56] McNamara JT, Morgan JLW, Zimmer J.A molecular description of cellulose biosynthesis.Annu Rev Biochem, 2015, 84:895-921.
    [57] Krasteva PV, Bernal-Bayard J, Travier L, et al.Insights into the structure and assembly of a bacterial cellulose secretion system.Nat Commun, 2017, 8(1):2065.
    [58] Zouhir S, Abidi W, Caleechurn M, et al.Structure and multitasking of the c-di-GMP-sensing cellulose secretion regulator BcsE.mBio, 2020, 11(4):e01303-e01320.
    [59] 孙坚,刘雅红,冯友军.动物源细菌耐药性研究现状与对策.生物工程学报, 2018, 34(8):1246-1258.Sun J, Liu YH, Feng YJ.Towards understanding antibiotic resistance in animals-borne bacterial pathogens.Chin J Biotech, 2018, 34(8):1246-1258(in Chinese).
    [60] 尹业师,陈华海,曹林艳,等.细菌耐药性应对策略研究进展.生物工程学报, 2018, 34(8):1346-1360.Yin YS, Chen HH, Cao LY, et al.Progress in strategies to combat antimicrobial resistance.Chin J Biotech, 2018, 34(8):1346-1360(in Chinese).
    [61] 黄璐璐,谷宇锋,吴翠蓉,等.细菌的应激反应和生理代谢与耐药性及其控制策略.生物工程学报, 2020, 36(11):2287-2297.Huang LL, Gu YF, Wu CR, et al.Bacterial stress response, physiological metabolism and antimicrobial tolerance and t
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何云江,贾伟娟,郗珊珊,孟庆磊,陈云娇,王学理. c-di-GMP对大肠杆菌生物膜调控的研究进展[J]. 生物工程学报, 2022, 38(8): 2811-2820

复制
分享
文章指标
  • 点击次数:615
  • 下载次数: 1555
  • HTML阅读次数: 1663
  • 引用次数: 0
历史
  • 收稿日期:2022-02-09
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第6611392位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司