动物模型在细菌生物被膜研究中的应用与展望
作者:
基金项目:

上海市教育委员会科研创新计划(2017-01-07-00-10-E00056);国家自然科学基金(31972188);上海市优秀学术带头人计划(21XD1401200)


Animal models in bacterial biofilm research: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [144]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    细菌生物被膜的形成与其致病性、耐药性密切相关,在许多由细菌导致的慢性、亚慢性感染中发挥着重要作用。动物模型广泛应用于细菌生物被膜相关感染的研究中,为其致病机理和控制策略的探究提供了强有力的科学工具。因此,本文系统阐述了哺乳类(鼠、兔、猪等)和非哺乳类(黑腹果蝇、斑马鱼、秀丽隐杆线虫等)动物模型在细菌生物被膜相关研究中的应用,并对动物模型在细菌生物被膜研究中的应用前景进行了展望,以期为研究由生物被膜导致的相关感染而选择理想动物模型提供理论支撑,从而对生物被膜感染导致的潜在危害进行防控。

    Abstract:

    Biofilm formation is closely related to pathogenicity and antibiotic resistance of bacteria, and plays important roles in a number of chronic and subchronic infections. Animal models are widely used in the research of bacterial biofilm-associated infections, and provide a powerful scientific tool for investigating its pathogenesis and control strategies. This review summarized the application of mammalian models (e.g. mouse, rabbit, and pig) and non-mammalian models (e.g. Drosophila melanogaster, Zebrafish, and Caenorhabditis elegans) in bacterial biofilm studies, and prospects the application of animal models in biofilm. This review may facilitate the selection of suitable animal models in the study of biofilm-associated infections, so as to prevent and control the potential adverse effects.

    参考文献
    [1] Donlan RM, Costerton JW.Biofilms:survival mechanisms of clinically relevant microorganisms.Clin Microbiol Rev, 2002, 15(2):167-193.
    [2] Rumbaugh KP, Sauer K.Biofilm dispersion.Nat Rev Microbiol, 2020, 18(10):571-586.
    [3] Davies D.Understanding biofilm resistance to antibacterial agents.Nat Rev Drug Discov, 2003, 2(2):114-122.
    [4] Costerton JW, Geesey GG, Cheng KJ.How bacteria stick.Sci Am, 1978, 238(1):86-95.
    [5] Chng KR, Li CH, Bertrand D, et al.Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment.Nat Med, 2020, 26(6):941-951.
    [6] Hathroubi S, Servetas SL, Windham I, et al.Helicobacter pylori biofilm formation and its potential role in pathogenesis.Microbiol Mol Biol Rev, 2018, 82(2):e00001-e00018.
    [7] Chen P, Wang JJ, Hong B, et al.Characterization of mixed-species biofilm formed by Vibrio parahaemolyticus and Listeria monocytogenes.Microbiol Mol Biol Rev, 2019, 10:2543.
    [8] 李欢.副溶血性弧菌耐药性微进化机制初步研究[D].上海:上海海洋大学, 2018.Li H.Preliminary research on microevolution mechanisms of antimicrobial resistance of Vibrio parahaemolyticus[D].Shanghai:Shanghai Ocean University, 2018(in Chinese).
    [9] Lee CR, Lee JH, Park M, et al.Biology of Acinetobacter baumannii:pathogenesis, antibiotic resistance mechanisms, and prospective treatment options.Front Cell Infect Microbiol, 2017, 7:55.
    [10] Hall CW, Mah TF.Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.FEMS Microbiol Rev, 2017, 41(3):276-301.
    [11] 汪婷婷,曲巍.基于动物实验引发的医学伦理问题及对策探究.锦州医科大学学报(社会科学版), 2021, 19(6):24-27.Wang TT, Qu W.Medical ethical problems and countermeasures based on animal experiments.J Jinzhou Med Univ (Soc Sci Ed), 2021, 19(6):24-27(in Chinese).
    [12] 刘旭,李悦,蔡芸,等.生物发光技术在细菌生物被膜感染中的应用.中国生化药物杂志, 2014, 34(6):184-186.Liu X, Li Y, Cai Y, et al.Applications of bioluminescence in biofilm infection.Chin J Biochem Pharm, 2014, 34(6):184-186(in Chinese).
    [13] 郑钦象,华闪闪,赵泽林,等.生物人工角膜治疗感染性角膜炎的安全性和有效性.中华眼视光学与视觉科学杂志, 2016, 18(4):215-218, 225.Zheng QX, Hua SS, Zhao ZL, et al.The safety and efficacy of bio-artificial cornea in the treatment of infectious keratitis.Chin J Optom Ophthalmol Vis Sci, 2016, 18(4):215-218, 225(in Chinese).
    [14] 王思琦,张昭寰,穆丽丽,等.人工模拟胃肠道模型在食源性致病菌耐受及致病机理中的应用.生物工程学报, 2018, 34(6):839-851.Wang SQ, Zhang ZH, Mu LL, et al.Applications of simulated gastro-intestinal model in foodborne pathogens:tolerance and pathogenesis.Chin J Biotech, 2018, 34(6):839-851(in Chinese).
    [15] Naik P, Pandey S, Naik MN, et al.Transcriptomic and histological analysis of exacerbated immune response in multidrug-resistant Pseudomonas aeruginosa in a murine model of endophthalmitis.Front immunol, 2021, 12:789023-789023.
    [16] Saraswathi P, Beuerman RW.Corneal biofilms:from planktonic to microcolony formation in an experimental keratitis infection with Pseudomonas aeruginosa.Ocular Surf, 2015, 13(4):331-345.
    [17] Ponce-Angulo DG, Bautista-Hernández LA, Calvillo-Medina RP, et al.Microscopic characterization of biofilm in mixed keratitis in a novel murine model.Microb Pathog, 2020, 140:103953.
    [18] Xu XH, Yu H, Zhang D, et al.Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation.Microbiol Res, 2016, 192:84-95.
    [19] Agnoli K, Schwager S, Uehlinger S, et al.Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid.Molecular microbiology, 2012, 83(2):362-378.
    [20] Pang B, Hong WZ, West-Barnette SL, et al.Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema.Infect Immun, 2008, 76(11):4959-4967.
    [21] Esoda CN, Kuehn MJ.Pseudomonas aeruginosa leucine aminopeptidase influences early biofilm composition and structure via vesicle-associated antibiofilm activity.MBio, 2019, 10(6):e02548-19.
    [22] Ozok HU, Ekim O, Saltas H, et al.The preventive role of transurethral antibiotic delivery in a rat model.Drug Des Devel Ther, 2012, 6:187-194.
    [23] Anderson GG, Palermo JJ, Schilling JD, et al.Intracellular bacterial biofilm-like pods in urinary tract infections.Science, 2003, 301(5629):105-107.
    [24] Justice SS, Hung C, Theriot JA, et al.Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis.PNAS, 2004, 101(5):1333-1338.
    [25] Kim SH, Ha US, Sohn DW, et al.Preventive effect of ginsenoid on chronic bacterial prostatitis.J Infect Chemother, 2012, 18(5):709-714.
    [26] Phan V, Belas R, Gilmore BF, et al.ZapA, a virulence factor in a rat model of Proteus mirabilis-induced acute and chronic prostatitis.Infect Immun, 2008, 76(11):4859-4864.
    [27] Kim SH, Ha US, Lee HR, et al.Do Escherichia coli extract and cranberry exert preventive effects on chronic bacterial prostatitis?Pilot study using an animal model.J Infect Chemother, 2011, 17(3):322-326.
    [28] Miró MS, Caeiro JP, Rodriguez E, et al.Candida albicans modulates murine and human beta defensin-1 during vaginitis.Journal of Fungi, 2021, 8(1):20.
    [29] Hymes SR, Randis TM, Sun TY, et al.DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.J Infect Dis, 2013, 207(10):1491-1497.
    [30] Grumbein S, Werb M, Opitz M, et al.Elongational rheology of bacterial biofilms in situ.J Rheol, 2016, 60(6):1085-1094.
    [31] Zhang S, Gao X, Xiao G, et al.Intracranial subarachnoidal route of infection for investigating roles of Streptococcus suis biofilms in meningitis in a mouse infection model.J Vis Exp, 2018(137):57658.
    [32] Pletzer D, Mansour SC, Wuerth K, et al.New mouse model for chronic infections by Gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions.mBio, 2017, 8(1):e00140-e00117.
    [33] Cevizci R, Düzlü M, Dündar Y, et al.Preliminary results of a novel quorum sensing inhibitor against pneumococcal infection and biofilm formation with special interest to otitis media and cochlear implantation.Eur Arch Otorhinolaryngol, 2015, 272(6):1389-1393.
    [34] Glage S, Paret S, Winkel A, et al.A new model for biofilm formation and inflammatory tissue reaction:intraoperative infection of a cranial implant with Staphylococcus aureus in rats.Acta Neurochir (Wien), 2017, 159(9):1747-1756.
    [35] Snowden JN, Beaver M, Smeltzer MS, et al.Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system.Infect Immun, 2012, 80(9):3206-3214.
    [36] Gurjala AN, Geringer MR, Seth AK, et al.Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing.Wound Repair Regen, 2011, 19(3):400-410.
    [37] Gupta RK, Alba J, Xiong YQ, et al.MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis.J Infect Dis, 2013, 208(11):1841-1848.
    [38] Cho DY, Lim DJ, MacKey C, et al.Preclinical therapeutic efficacy of the ciprofloxacin-eluting sinus stent for Pseudomonas aeruginosa sinusitis.Int Forum Allergy Rhinol, 2018, 8(4):482-489.
    [39] Jia MH, Chen ZC, Guo YW, et al.Efficacy of silk fibroin-nano silver against Staphylococcus aureus biofilms in a rabbit model of sinusitis.Int J Nanomedicine, 2017, 12:2933-2939.
    [40] Jia MH, Chen ZC, Du X, et al.A simple animal model of Staphylococcus aureus biofilm in sinusitis.Am J Rhinol Allergy, 2014, 28(2):e115-e119.
    [41] Hasturk H, Kantarci A, Goguet-Surmenian E, et al.Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo.J Immunol, 2007, 179(10):7021-7029.
    [42] Büren C, Hambüchen M, Windolf J, et al.Histological score for degrees of severity in an implant-associated infection model in mice.Archives of Orthopaedic and Trauma Surgery, 2019, 139(9):1235-1244.
    [43] Bottagisio M, Coman C, Lovati AB.Animal models of orthopaedic infections.A review of rabbit models used to induce long bone bacterial infections.J Med Microbiol, 2019, 68(4):506-537.
    [44] Wong RMY, Li TK, Li J, et al.A systematic review on current osteosynthesis-associated infection animal fracture models.J Orthop Translat, 2020, 23:8-20.
    [45] Shalom Y, Perelshtein I, Perkas N, et al.Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections.Nano Res, 2017, 10(2):520-533.
    [46] López-Torres II, Sanz-Ruíz P, Navarro-García F, et al.Experimental reproduction of periprosthetic joint infection:developing a representative animal model.Knee, 2020, 27(3):1106-1112.
    [47] Harrison ZL, Pace LR, Brown MN, et al.Staphylococcal infection prevention using antibiotic-loaded mannitol-chitosan paste in a rabbit model of implant-associated osteomyelitis.J Orthop Res, 2021, 39(11):2455-2464.
    [48] Gordon O, Miller RJ, Thompson JM, et al.Rabbit model of Staphylococcus aureus implant-associated spinal infection.Dis Models Mech, 2020, 13(7):dmm.045385.
    [49] Fernández-Barat L, Li Bassi G, Ferrer M, et al.Direct analysis of bacterial viability in endotracheal tube biofilm from a pig model of methicillin-resistant Staphylococcus aureus pneumonia following antimicrobial therapy.FEMS Immunol Med Microbiol, 2012, 65(2):309-317.
    [50] Aboshady I, Raad I, Shah AS, et al.A pilot study of a triple antimicrobial-bonded Dacron graft for the prevention of aortic graft infection.J Vasc Surg, 2012, 56(3):794-801.
    [51] Cole SJ, Lee VT.Cyclic di-GMP signaling contributes to Pseudomonas aeruginosa-mediated catheter-associated urinary tract infection.J Bacteriol, 2015, 198(1):91-97.
    [52] Styer KL, Hopkins GW, Bartra SS, et al.Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors.EMBO Rep, 2005, 6(10):992-997.
    [53] Hans S, Fatima Z, Hameed S.Retrograde signaling disruption influences ABC superfamily transporter, ergosterol and chitin levels along with biofilm formation in Candida albicans.J Mycol Med, 2019, 29(3):210-218.
    [54] Wang H, Chu WH, Ye C, et al.Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing.Appl Microbiol Biotechnol, 2019, 103(2):903-915.
    [55] Lee WT, Tan BK, Eng SA, et al.Black Sea cucumber (Holothuria atra Jaeger, 1833) rescues Pseudomonas aeruginosa-infected Caenorhabditis elegans via reduction of pathogen virulence factors and enhancement of host immunity.Food Funct, 2019, 10(9):5759-5767.
    [56] Subramaniyan SB, Ramani A, Ganapathy V, et al.Preparation of self-assembled platinum nanoclusters to combat Salmonella typhi infection and inhibit biofilm formation.Colloids Surf B Biointerfaces, 2018, 171:75-84.
    [57] Lu JJ, Lo HJ, Wu YM, et al.DST659 genotype of Candida albicans showing positive association between biofilm formation and dominance in Taiwan.Med Mycol, 2018, 56(8):972-978.
    [58] Díaz-Pascual F, Ortíz-Severín J, Varas MA, et al.In vivo host-pathogen interaction as revealed by global proteomic profiling of zebrafish larvae.Front Cell Infect Microbiol, 2017, 7:334.
    [59] Milivojevic D,Šumonja N, Medic S, et al.Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans.Pathog Dis, 2018, 76(4):2018Jun1;76(4).
    [60] Mulcahy H, Sibley CD, Surette MG, et al.Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo.PLoS Pathog, 2011, 7(10):e1002299.
    [61] Zeng B, Wang C, Zhang PS, et al.Heat shock protein DnaJ in Pseudomonas aeruginosa affects biofilm formation via pyocyanin production.Microorganisms, 2020, 8(3):395.
    [62] Martínez E, Campos-Gómez J.Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence.Nat Commun, 2016, 7:13823.
    [63] Scheman L, Janota M, Lewin P.The production of experimental osteomyelitis.J Am Med Assoc, 1941, 117(18):1525.
    [64] Lebeaux D, Chauhan A, Rendueles O, et al.From in vitro to in vivo models of bacterial biofilm-related infections.Pathogens, 2013, 2(2):288-356.
    [65] 段高飞,韩峰,李京宝,等.细菌生物膜相关感染的防治方法研究进展.中国海洋大学学报(自然科学版), 2010, 40(5):107-111.Duan GF, Han F, Li JB, et al.Research progress on prevention and cure of baterial biofilm.Period Ocean Univ China (Nat Sci Ed), 2010, 40(5):107-111(in Chinese).
    [66] Barré-Sinoussi F, Montagutelli X.Animal models are essential to biological research:issues and perspectives.Future Sci OA, 2015, 1(4):FSO63.
    [67] Real FM, Haas SA, Franchini P, et al.The mole genome reveals regulatory rearrangements associated with adaptive intersexuality.Science, 2020, 370(6513):208-214.
    [68] Jung J, Yoo JE, Choe YH, et al.Cleaved cochlin sequesters Pseudomonas aeruginosa and activates innate immunity in the inner ear.Cell Host Microbe, 2019, 25(4):513-525.e6.
    [69] Khomtchouk KM, Kouhi A, Xia AP, et al.A novel mouse model of chronic suppurative otitis media and its use in preclinical antibiotic evaluation.Sci Adv, 2020, 6(33):eabc1828.
    [70] György B, Nist-Lund C, Pan BF, et al.Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss.Nat Med, 2019, 25(7):1123-1130.
    [71] Yadav MK, Chae SW, Go YY, et al.In vitro multi-species biofilms of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa and their host interaction during in vivo colonization of an otitis media rat model.Front Cell Infect Microbiol, 2017, 7:125.
    [72] LaRusch J, Jung J, General IJ, et al.Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.PLoS Genet, 2014, 10(7):e1004376.
    [73] Ahmadi TS, Gargari SLM, Talei D.Anti-flagellin IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound murine models in a non-type-specific mode.Mol Immunol, 2021, 136:118-127.
    [74] Hoffmann N, Rasmussen TB, Jensen PØ, et al.Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis.Infect Immun, 2005, 73(4):2504-2514.
    [75] Brao KJ, Wille BP, Lieberman J, et al.Scnn1b-transgenic BALB/c mice as a model of Pseudomonas aeruginosa infections of the cystic fibrosis lung.Infect Immun, 2020, 88(9):e00237-e00220.
    [76] Zeise KD, Woods RJ, Huffnagle GB.Interplay between Candida albicans and lactic acid bacteria in the gastrointestinal tract:impact on colonization resistance, microbial carriage, opportunistic infection, and host immunity.Clin Microbiol Rev, 2021, 34(4):e0032320.
    [77] Barnes AMT, Dale JL, Chen YQ, et al.Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model.Virulence, 2017, 8(3):282-296.
    [78] Gallego-Hernandez AL, DePas WH, Park JH, et al.Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity.PNAS, 2020, 117(20):11010-11017.
    [79] Nunez Lopez O, Cambiaso-Daniel J, Branski LK, et al.Predicting and managing Sepsis in burn patients:current perspectives.Ther Clin Risk Manag, 2017, 13:1107-1117.
    [80] Qiao YQ, Liu XM, Li B, et al.Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing.Nat Commun, 2020, 11(1):4446.
    [81] Kobayashi SD, Porter AR, Freedman B, et al.Antibody-mediated killing of carbapenem-resistant ST258Klebsiella pneumoniae by human neutrophils.mBio, 2018, 9(2):e00297-e00218.
    [82] Abdullahi A, Amini-Nik S, Jeschke MG.Animal models in burn research.Cell Mol Life Sci, 2014, 71(17):3241-3255.
    [83] 赵芝静,刘心伟,张小倩,等.铜绿假单胞菌生物被膜调控机制的研究进展.中华预防医学杂志, 2020, 54(12):1469-1472.Zhao ZJ, Liu XW, Zhang XQ, et al.Research progress on the regulation mechanism of Pseudomonas aeruginosa biofilm.Chin J Prev Med, 2020, 54(12):1469-1472(in chinese).
    [84] Dai TH, Tegos GP, Zhiyentayev T, et al.Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model.Lasers Surg Med, 2010, 42(1):38-44.
    [85] Brandenburg KS, Weaver AJ Jr, Karna SLR, et al.Formation of Pseudomonas aeruginosa biofilms in full-thickness scald burn wounds in rats.Sci Rep, 2019, 9(1):13627.
    [86] Marrie TJ, Nelligan J, Costerton JW.A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead.Circulation, 1982, 66(6):1339-1341.
    [87] Witsø E, Hoang L, Løseth K, et al.Establishment of an in vivo rat model for chronic musculoskeletal implant infection.J Orthop Surg Res, 2020, 15(1):23.
    [88] Capote-Bonato F, Bonato DV, Ayer IM, et al.Murine model for the evaluation of candiduria caused by Candida tropicalis from biofilm.Microb Pathog, 2018, 117:170-174.
    [89] Halkom A, Wu H, Lu Q.Contribution of mouse models in our understanding of lupus.Int Rev Immunol, 2020, 39(4):174-187.
    [90] Cooper RA, Bjarnsholt T, Alhede M.Biofilms in wounds:a review of present knowledge.J Wound Care, 2014, 23(11):570-582.
    [91] Meulemans L, Hermans K, Duchateau L, et al.High and low virulence Staphylococcus aureus strains in a rabbit skin infection model.Vet Microbiol, 2007, 125(3/4):333-340.
    [92] Matsuhisa F, Kitajima S, Nishijima K, et al.Transgenic rabbit models:now and the future.Appl Sci, 2020, 10(21):7416.
    [93] Seth AK, Geringer MR, Nguyen KT, et al.Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds:a new approach to chronic wound care.Plast Reconstr Surg, 2013, 131(2):225-234.
    [94] D'Arpa P, Karna SL, Chen T, et al.Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds.Sci Rep, 2021, 11(1):20632.
    [95] Chan BY, Crawford AM, Kobes PH, et al.Septic arthritis:an evidence-based review of diagnosis and image-guided aspiration.AJR Am J Roentgenol, 2020, 215(3):568-581.
    [96] Margaryan D, Renz N, Gwinner C, et al.Septic arthritis of the native joint and after ligamentoplasty:diagnosis and treatment.Orthopade, 2020, 49(8):660-668.
    [97] Baranwal G, Mohammad M, Jarneborn A, et al.Impact of cell wall peptidoglycan O-acetylation on the pathogenesis of Staphylococcus aureus in septic arthritis.Int J Med Microbiol, 2017, 307(7):388-397.
    [98] Çiçek M, Hasçelik G, Müştak HK, et al.Accurate diagnosis of Pseudomonas luteola in routine microbiology laboratory:on the occasion of two isolates.Mikrobiyol Bul.2016, 50(4):621-624.
    [99] Abram SGF, Alvand A, Judge A, et al.Mortality and adverse joint outcomes following septic arthritis of the native knee:a longitudinal cohort study of patients receiving arthroscopic washout.Lancet Infect Dis, 2020, 20(3):341-349.
    [100] Olney BW, Papasian CJ, Jacobs RR.Risk of iatrogenic septic arthritis in the presence of bacteremia:a rabbit study.J Pediatr Orthop, 1987, 7(5):524-526.
    [101] Sinha BP, Chatterjee S, Buragohain R, et al.Efficacy evaluation of ethanolic extract of Tamarindus indica L.leaves as possible alternate therapy in septic arthritis model of rabbit.BMC Complement Altern Med, 2019, 19(1):261.
    [102] Marcheix PS, Martin C, Fiorenza F, et al.Intra-articular gentamicin-loaded PLA microparticle injection for the treatment of septic arthritis in rabbits.J Am Acad Orthop Surg, 2018, 26(16):e349-e356.
    [103] Oner M, Kafadar I, Guney A, et al.Effect of intraarticular Propolis in an experimental septic arthritis model.J Pediatr Orthop B, 2011, 20(1):8-13.
    [104] Li DB, Zhang L, Liang JH, et al.Biofilm formation by Pseudomonas aeruginosa in a novel septic arthritis model.Front Cell Infect Microbiol, 2021, 11:724113.
    [105] Tao J, Zhang Y, Shen A, et al.Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis.Int J Nanomedicine, 2020, 15:5855-5871.
    [106] Köse N, Asfuroğlu ZM, Köse A, et al.Silver ion-doped calcium phosphate-based bone-graft substitute eliminates chronic osteomyelitis:an experimental study in animals.J Orthop Res, 2021, 39(7):1390-1401.
    [107] 娄方练,郑周海,付福建.特地唑胺对耐甲氧西林表皮葡萄球菌植入物相关性骨髓炎的治疗效果研究.中国医院用药评价与分析, 2021, 21(4):420-423.Lou FL, Zheng ZH, Fu FJ.Therapeutic effects of terazolamide on methicillin-resistant Staphylococcus epidermidis implant associated osteomyelitis.Eval Anal Drug Use Hosp China, 2021, 21(4):420-423(in Chinese).
    [108] Zhang X, Ma YF, Wang L, et al.A rabbit model of implant-related osteomyelitis inoculated with biofilm after open femoral fracture.Exp Ther Med, 2017, 14(5):4995-5001.
    [109] Hovis JP, Montalvo R, Marinos D, et al.Intraoperative vancomycin powder reduces Staphylococcus aureus surgical site infections and biofilm formation on fixation implants in a rabbit model.J Orthop Trauma, 2018, 32(5):263-268.
    [110] Meurens F, Summerfield A, Nauwynck H, et al.The pig:a model for human infectious diseases.Trends Microbiol, 2012, 20(1):50-57.
    [111] Swindle MM, Makin A, Herron AJ, et al.Swine as models in biomedical research and toxicology testing.Vet Pathol, 2012, 49(2):344-356.
    [112] Jensen LK, Johansen ASB, Jensen HE.Porcine models of biofilm infections with focus on pathomorphology.Front Microbiol, 2017, 8:1961.
    [113] Tanaka T, Yahata Y, Handa K, et al.An experimental intraradicular biofilm model in the pig for evaluating irrigation techniques.BMC Oral Health, 2021, 21(1):177.
    [114] Seifer DR, Furman BD, Guilak F, et al.Novel synovial fluid recovery method allows for quantification of a marker of arthritis in mice.Osteoarthritis Cartilage, 2008, 16(12):1532-1538.
    [115] Johansen LK, Koch J, Frees D, et al.Pathology and biofilm formation in a porcine model of staphylococcal osteomyelitis.J Comp Pathol, 2012, 147(2/3):343-353.
    [116] Donato V, Ayala FR, Cogliati S, et al.Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway.Nat Commun, 2017, 8:14332.
    [117] Neely MN, Pfeifer JD, Caparon M.Streptococcus-zebrafish model of bacterial pathogenesis.Infect Immun, 2002, 70(7):3904-3914.
    [118] De Bentzmann S, Giraud C, Bernard CS, et al.Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB.PLoS Pathog, 2012, 8(11):e1003052.
    [119] Ziegler A, Gonzalez L, Blikslager A.Large animal models:the key to translational discovery in digestive disease research.Cell Mol Gastroenterol Hepatol, 2016, 2(6):716-724.
    [120] Hinnebusch BJ, Jarrett CO, Bland DM.Molecular and genetic mechanisms that mediate transmission of Yersinia pestis by fleas.Biomolecules, 2021, 11(2):210.
    [121] Apidianakis Y, Rahme LG.Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection.Nat Protoc, 2009, 4(9):1285-1294.
    [122] Tzelepis I, Kapsetaki SE, Panayidou S, et al.Drosophila melanogaster:a first step and a stepping-stone to anti-infectives.Curr Opin Pharmacol, 2013, 13(5):763-768.
    [123] Lee YJ, Jang HJ, Chung IY, et al.Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus.J Microbiol, 2018, 56(8):534-541.
    [124] Vijay K.Toll-like receptors in immunity and inflammatory diseases:past, present, and future.Int Immunopharmacol, 2018, 59:391-412.
    [125] Reiter LT, Potocki L, Chien S, et al.A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster.Genome Res, 2001, 11(6):1114-1125.
    [126] Hakimzadeh A, Okshevsky M, Maisuria V, et al.Exposure to freeze-thaw conditions increases virulence of Pseudomonas aeruginosa to Drosophila melanogaster.Environ Sci Technol, 2018, 52(24):14180-14186.
    [127] Bronnec V, Alexeyev OA.In vivo model of Propionibacterium(Cutibacterium) spp.biofilm in Drosophila melanogaster.Anaerobe, 2021, 72:102450.
    [128] Howe K, Clark MD, Torroja CF, et al.The zebrafish reference genome sequence and its relationship to the human genome.Nature, 2013, 496(7446):498-503.
    [129] Boswell CW, Ciruna B.Understanding idiopathic scoliosis:a new zebrafish school of thought.Trends Genet, 2017, 33(3):183-196.
    [130] Kanwal Z, Wiegertjes GF, Veneman WJ, et al.Comparative studies of toll-like receptor signalling using zebrafish.Dev Comp Immunol, 2014, 46(1):35-52.
    [131] Runft DL, Mitchell KC, Abuaita BH, et al.Zebrafish as a natural host model for Vibrio cholerae colonization and transmission.Appl Environ Microbiol, 2014, 80(5):1710-1717.
    [132] Ke T, Santamaría A, Tinkov AA, et al.Generating bacterial foods in toxicology studies with Caenorhabditis elegans.Curr Protoc Toxicol, 2020, 84(1):e94.
    [133] Chan SY, Liu SY, Seng Z, et al.Biofilm matrix disrupts nematode motility and predatory behavior.ISME Journal, 2021, 15(1):260-269.
    [134] Dirksen P, Assié A, Zimmermann J, et al.CeMbio-the Caenorhabditis elegans microbiome resource.G3(Bethesda), 2020, 10(9):3025-3039.
    [135] Kaletsky R, Murphy CT.The role of insulin/IGF-like signaling in Caenorhabditis elegans longevity and aging.Dis Model Mech, 2010, 3(7/8):415-419.
    [136] Drace K, Darby C.The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans.Appl Environ Microbiol, 2008, 74(14):4509-4515.
    [137] Darby C, Hsu JW, Ghori N, et al.Plague bacteria biofilm blocks food intake.Nature, 2002, 417(6886):243-244.
    [138] Atkinson S, Goldstone RJ, Joshua GWP, et al.Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type Ⅲ secretion.PLoS Pathog, 2011, 7(1):e1001250.
    [139] 张日丽.龙血素A抗白念珠菌生物被膜的作用及秀丽隐杆线虫感染模型的研究[D].上海:第二军医大学, 2017.Zhang RL.Effect of loureirin A against Candida albicans biofilms and the study of Caenorhabditis elegans infection models[D].Shanghai:Second Military Medical University, 2017(in Chinese).
    [140] Seo YJ, Brown D.Experimental animal models for Meniere's disease:a mini-review.J Audiol Otol, 2020, 24(2):53-60.
    [141] De La Rochere P, Guil-Luna S, Decaudin D, et al.Humanized mice for the study of immuno-oncology.Trends Immunol, 2018, 39(9):748-763.
    [142] Shultz LD, Brehm MA, Garcia-Martinez JV, et al.Humanized mice for immune system investigation:progress, promise and challenges.Nat Rev Immunol, 2012, 12(11):786-798.
    [143] 王思琦.副溶血性弧菌在模拟消化过程中变化的初步研究[D].上海:上海海洋大学, 2019.Wang SQ.Fate of Vibrio parahaemolyticus during simulated digestion process[D].Shanghai:Shanghai Ocean University, 2019(in Chinese).
    [144] Hoque J, Haldar J.Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms.ACS Appl Mater Interfaces, 2017, 9(19):15975-15985.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐欢,刘静,张昭寰,陶倩,黄振华,潘迎捷,赵勇. 动物模型在细菌生物被膜研究中的应用与展望[J]. 生物工程学报, 2022, 38(8): 2840-2856

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-27
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司