应用慢病毒shRNA文库结合二代测序筛选白血病细胞系增殖相关lncRNA
作者:
基金项目:

国家自然科学基金(82170117,82170135,81970149)


Screening of proliferation related lncRNAs in leukemia cell lines by lentivirus shRNA library combined with second-generation sequencing
Author:
  • MA Qiuyi

    MA Qiuyi

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Deyang

    SHI Deyang

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Bichen

    WANG Bichen

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAO Mutian

    CAO Mutian

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Haoyuan

    LI Haoyuan

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YUAN Weiping

    YUAN Weiping

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHU Yajing

    CHU Yajing

    State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长链非编码RNA (long non-coding RNA,lncRNA)是包括细胞增殖在内的许多细胞过程的重要调节因子。虽然已有研究表明多种lncRNA在造血系统恶性肿瘤的发生发展过程中发挥重要作用,但是缺少一个更全面和无偏倚的方法同时研究多个lncRNA中对白血病细胞系产生功能性影响的lncRNA。在此,我们利用短发夹RNA (short hairpin RNA,shRNA)文库结合高通量测序的方法,筛选对白血病细胞系增殖有影响的lncRNA,确定了74个候选lncRNAs。从中选取lncRNA C20orf204-203作为验证研究对象,发现C20orf204-203在K562和THP-1细胞系中均定位于胞质,敲降C20orf204-203的K562和THP-1细胞系增殖能力降低,早期凋亡细胞增加,BAD基因在mRNA水平上表达量增加,TP53、BCL2蛋白表达量下降,在THP-1细胞系中Caspase 3蛋白表达量减少,激活型Caspase 3蛋白表达量上升,但是二者变化在两种细胞系中不一致。结果表明,在白血病细胞系中敲降lncRNA C20orf204-203会使细胞增殖能力降低。但其在不同细胞系作用途径和机制可能存在差异。这一研究表明了利用shRNA文库结合高通量测序大规模研究lncRNA在白血病细胞系中发挥作用的可行性。

    Abstract:

    Long non-coding RNA (lncRNA) has become an important regulator of many cellular processes, including cell proliferation. Although studies have shown that a variety of lncRNAs play an important role in the occurrence and development of hematopoietic malignancies, a more comprehensive and unbiased method to study the function of lncRNAs in leukemia cell lines is lacking. Here, we used short hairpin RNA (shRNA) library combined with high-throughput sequencing to screen lncRNAs that may affect the proliferation of leukemia cell lines, and identified lncRNA C20orf204-203 among 74 candidate lncRNAs in this study. Further experiments showed that C20orf204-203 was localized in the cytoplasm in both K562 and THP-1 cell lines. C20orf204-203 knockdown decreased the proliferation of K562 and THP-1 cell lines accompanied with the increased proportion of early apoptotic cells. We observed the increased mRNA level of BAD gene while decreased protein level of TP53 and BCL2. The expression of Caspase 3 decreased and Caspase 3-cleaved protein increased in THP-1 cell line. However, their changes were inconsistent in the two cell lines. Our experimental results showed that knockdown of lncRNA C20orf204-203 in leukemia cell lines affected cell proliferation although the mechanism of action in different cell lines may differ. Importantly, our research demonstrated the feasibility of using shRNA library combined with high-throughput sequencing to study the role of lncRNA in leukemia cell lines on a large scale.

    参考文献
    [1] Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature, 2012, 489(7414):101-108.
    [2] Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife, 2020, 9:e60583.
    [3] Mowel WK, Kotzin JJ, McCright SJ, et al. Control of immune cell homeostasis and function by lncRNAs. Trends Immunol, 2018, 39(1):55-69.
    [4] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs:analysis of their gene structure, evolution, and expression. Genome Res, 2012, 22(9):1775-1789.
    [5] Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol, 2015, 16(1):20.
    [6] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 172(3):393-407.
    [7] Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 2010, 28(5):503-510.
    [8] Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011, 25(18):1915-1927.
    [9] Orkin SH, Zon LI. SnapShot:hematopoiesis. Cell, 2008, 132(4):712.
    [10] Sheik Mohamed J, Gaughwin PM, Lim B, et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA, 2010, 16(2):324-337.
    [11] Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477(7364):295-300.
    [12] Williams GT, Mourtada-Maarabouni M, Farzaneh F. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans, 2011, 39(2):482-486.
    [13] Zhang XQ, Lian Z, Padden C, et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, 2009, 113(11):2526-2534.
    [14] Zhang XQ, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol, 2014, 11(6):777-787.
    [15] Chen ZH, Wang WT, Huang W, et al. The lncRNA HOTAIRM1 regulates the degradation of PML- RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ, 2017, 24(2):212-224.
    [16] Sun LY, Li XJ, Sun YM, et al. LncRNA ANRIL regulates AML development through modulating the glucose metabolism pathway of AdipoR1/AMPK/SIRT1. Mol Cancer, 2018, 17(1):127.
    [17] Feng YB, Hu S, Li LL, et al. LncRNA NR-104098 inhibits AML proliferation and induces differentiation through repressing EZH2 transcription by interacting with E2F1. Front Cell Dev Biol, 2020, 8:142.
    [18] Zhuang MF, Li LJ, Ma JB. LncRNA HOTTIP promotes proliferation and cell cycle progression of acute myeloid leukemia cells. Eur Rev Med Pharmacol Sci, 2019, 23(7):2908-2915.
    [19] Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function:an innate immune perspective. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4):194419.
    [20] Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas- López DA, et al. Long non-coding RNA and acute leukemia. Int J Mol Sci, 2019, 20(3):735.
    [21] Liu Q, Dong J, Li J, et al. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1. Clin Transl Oncol, 2021, 23(6):1105-1116.
    [22] Sims D, Mendes-Pereira AM, Frankum J, et al. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol, 2011, 12(10):R104.
    [23] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016, 127(20):2391-2405.
    [24] Huang HH, Chen FY, Chou WC, et al. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer, 2019, 19(1):617.
    [25] Larsson CA, Cote G, Quintás-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res, 2013, 11(8):815-827.
    [26] Zeidan AM, Wang R, Davidoff AJ, et al. Disease-related costs of care and survival among Medicare-enrolled patients with myelodysplastic syndromes. Cancer, 2016, 122(10):1598-1607.
    [27] Geisler S, Coller J. RNA in unexpected places:long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol, 2013, 14(11):699-712.
    [28] Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood, 2017, 130(18):1965-1975.
    [29] Alvarez-Dominguez JR, Hu WQ, Gromatzky AA, et al. Long noncoding RNAs during normal and malignant hematopoiesis. Int J Hematol, 2014, 99(5):531-541.
    [30] Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med, 2014, 20(11):623-631.
    [31] Karlsson C, Rak J, Larsson J. RNA interference screening to detect targetable molecules in hematopoietic stem cells. Curr Opin Hematol, 2014, 21(4):283-288.
    [32] Zuber J, Shi JW, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011, 478(7370):524-528.
    [33] Miller PG, Al-Shahrour F, Hartwell KA, et al. In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell, 2013, 24(1):45-58.
    [34] Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken), 2019, 2(2):e1139.
    [35] Li W, Zhong CQ, Jiao J, et al. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci, 2017, 18(3):597.
    [36] Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res, 2019, 85:106198.
    [37] DiNardo CD, Cortes JE. Mutations in AML:prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program, 2016, 2016(1):348-355.
    [38] Kojima K, Konopleva M, Samudio IJ, et al. MDM2 antagonists induce p53-dependent apoptosis in AML:implications for leukemia therapy. Blood, 2005, 106(9):3150-3159.
    [39] Carvajal LA, Neriah DB, Senecal A, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med, 2018, 10(436):eaao3003.
    [40] Pant V, Quintás-Cardama A, Lozano G. The p53 pathway in hematopoiesis:lessons from mouse models, implications for humans. Blood, 2012, 120(26):5118-5127.
    [41] Bykov VJN, Eriksson SE, Bianchi J, et al. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer, 2018, 18(2):89-102.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马秋怡,石得阳,汪碧忱,曹牧天,李浩渊,袁卫平,初雅婧. 应用慢病毒shRNA文库结合二代测序筛选白血病细胞系增殖相关lncRNA[J]. 生物工程学报, 2022, 38(9): 3406-3418

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-16
  • 录用日期:2022-05-10
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6362003位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司