透明质酸微针经皮递送胰岛素智能给药系统用于糖尿病治疗
作者:

Application of hyaluronic acid microneedles in insulin intelligent delivery system for the treatment of diabetes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究通过共沉淀法制备了胰岛素(insulin,INS)/Ca3PO4复合物和葡萄糖氧化酶(glucose oxidase,GOx)/Cu3(PO4)2复合物,得到的矿化胰岛素(mineralized insulin,m-INS)呈现不规则结晶团簇状,矿化葡萄糖氧化酶(m-Gox)呈花球状形貌,直径约1–2 μm。体外模拟释放实验表明,m-INS会随介质pH值降低而释放出INS,pH为4.5时其释放量达到96.68%;酶活力检测实验表明m-GOx的酶活力稳定性高于游离的GOx,在室温放置10 d后仍保持较高活力,而GOx活力小于60%。通过配制葡萄糖溶液模拟正常血糖(5.6 mmol/L)和高血糖(22.2 mmol/L)状态,在葡萄糖溶液中加入m-INS和m-GOx,INS的释放量呈现显著的葡萄糖浓度依赖性,即葡萄糖浓度越高,INS释放量和释放速率越大。最后,将m-INS、m-GOx与透明质酸(hyaluronic acid,HA)溶液混合,制备负载m-INS和m-GOx的HA微针阵列,构建1型糖尿病模型鼠,通过微针给药的方式评估载药HA微针对糖尿病大鼠的血糖控制效果。结果表明:负载m-INS/m-GOx的HA微针能有效递送药物,糖尿病大鼠的平均血糖浓度在1 h内下降到约7 mmol/L,并能维持10 h的正常血糖,使血糖浓度低于给药前水平长达36 h。与仅负载INS的HA微针相比,m-INS微针具有更好的葡萄糖耐受性、更持久的控糖效果和更小的低血糖风险。相对于其他的缓释系统,本研究中的核心成分制备流程简单、效率高和安全有效,具备较大的商业化潜力。

    Abstract:

    In this study, insulin (insulin, INS)/Ca3PO4 complex and glucose oxidase (glucose oxidase, GOx)/Cu3(PO4)2 complex were prepared by coprecipitation method. The mineralized insulin (mineralized insulin, m-INS) showed irregular crystalline clusters, and the mineralized glucose oxidase (m-GOx) showed flower spherical morphology, with a diameter of about 1-2 μm. In vitro simulated release experiment showed that m-INS released INS as the pH value of the medium decreased. When the pH value was 4.5, the release amount reached 96.68%. The enzyme activity detection experiment showed that the enzyme activity stability of m-GOx was higher than that of free GOx. It still maintained high activity after 10 days at room temperature, while the activity of GOx was less than 60%. The glucose solution was prepared to simulate the state of normal blood glucose (5.6 mmol/L) and hyperglycemia (22.2 mmol/L). When m-INS and m-GOx were added to the glucose solution, the release amount of INS showed a significant glucose concentration dependence. The higher the glucose concentration, the greater the release amount and release rate of INS. Finally, m-INS, m-GOx and hyaluronic acid (HA) solution were mixed to prepare HA microneedle arrays loaded with m-INS and m-GOx. Type 1 diabetes mice were constructed to evaluate the effect of drug-loaded HA microarray on blood glucose control in diabetic rats. The results show that the HA microneedles loaded with m-INS/m-GOx could deliver drugs effectively. The average blood glucose concentration in diabetic rats dropped to about 7 mmol/L within 1 h, normal blood glucose concentration could be maintained for 10 h, and the overall blood glucose concentration was lower than the level before administration for 36 hours. Compared with HA microneedles loaded with INS only, m-ins microneedles showed better glucose tolerance, longer-lasting glucose control effect and less risk of hypoglycemia. Compared with other sustained-release systems, the preparation process of the core components in this study is simple, efficient, safe and effective, and has great commercial potential.

    参考文献
    [1] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas:global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract, 2022, 183:109119.
    [2] Valerón PF, de Pablos-Velasco PL. Limitations of insulin-dependent drugs in the treatment of type 2 diabetes mellitus. Med Clin (Barc), 2013, 141(Suppl 2):20-25.
    [3] Perreault L, Vincent L, Neumiller JJ, et al. Initiation and titration of basal insulin in primary care:barriers and practical solutions. J Am Board Fam Med, 2019, 32(3):431-447.
    [4] Shah S, Sharma SK, Singh P, et al. Consensus evidence-based guidelines for insulin initiation, optimization and continuation in type 2 diabetes mellitus. J Assoc Physicians India, 2014, 62(7 Suppl):49-54.
    [5] Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics, 2015, 7(4):379-396.
    [6] Chong RHE, Gonzalez-Gonzalez E, Lara MF, et al. Gene silencing following siRNA delivery to skin via coated steel microneedles:in vitro and in vivo proof-of-concept. J Control Release, 2013, 166(3):211-219.
    [7] Jun H, Han MR, Kang NG, et al. Use of hollow microneedles for targeted delivery of phenylephrine to treat fecal incontinence. J Control Release, 2015, 207:1-6.
    [8] Caffarel-Salvador E, Tuan-Mahmood TM, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm, 2015, 489(1/2):158-169.
    [9] Cole G, McCaffrey J, Ali AA, et al. Dissolving microneedles for DNA vaccination:improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother, 2017, 13(1):50-62.
    [10] Yu WJ, Jiang GH, Liu DP, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C Mater Biol Appl, 2017, 71:725-734.
    [11] Zhu ZZ, Luo HF, Lu WD, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res, 2014, 31(12):3348-3360.
    [12] Chen MC, Ling MH, Lai KY, et al. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules, 2012, 13(12):4022-4031.
    [13] Nonoyama T, Wada S, Kiyama R, et al. Double- network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration. Adv Mater, 2016, 28(31):6740-6745.
    [14] Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release, 2017, 252:62-72.
    [15] 李晓玉, 李光大, 赵三团, 等. 载丹皮酚透钙磷石骨水泥的制备与表征. 中国组织工程研究, 2018, 22(10):1499-1505. Li XY, Li GD, Zhao ST, et al. Preparation and characterization of paeonol loaded brushite calcium phosphate cement. Chin J Tissue Eng Res, 2018, 22(10):1499-1505(in Chinese).
    [16] Matsumoto N, Yoshida K, Hashimoto K, et al. Synthesis and characterization of hydroxyapatite using polymerized complex method by chelation of calcium ions with organic phosphonic acid. J Ceram Soc Japan, 2009, 117(1363):249-254.
    [17] Tsubery H, Mironchik M, Fridkin M, et al. Prolonging the action of protein and peptide drugs by a novel approach of reversible polyethylene glycol modification. J Biol Chem, 2004, 279(37):38118- 38124.
    [18] Xu AW, Ma YR, Cölfen H. Biomimetic mineralization. J Mater Chem, 2007, 17(5):415-449.
    [19] Cölfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed, 2003, 42(21):2350-2365.
    [20] Ge J, Lei JD, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol, 2012, 7(7):428-432.
    [21] Sun JY, Ge JC, Liu WM, et al. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers:synthesis and application as a colorimetric sensor. Nanoscale, 2014, 6(1):255-262.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖永成,王小斌,谢德明. 透明质酸微针经皮递送胰岛素智能给药系统用于糖尿病治疗[J]. 生物工程学报, 2022, 38(9): 3433-3442

复制
分享
文章指标
  • 点击次数:387
  • 下载次数: 1202
  • HTML阅读次数: 1067
  • 引用次数: 0
历史
  • 收稿日期:2022-02-22
  • 录用日期:2022-05-30
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6362142位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司