无细胞系统在CRISPR技术和生物传感器中的应用研究进展
作者:
基金项目:

国家自然科学基金(21877100, 22177104);浙江省属高校基本科研业务费(RF-B2019003)


Application of cell-free transcription and translation system in CRISPR technologies and the associated biosensors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无细胞转录翻译系统(cell-free transcription and translation, TXTL),简称无细胞系统,即基于细胞提取物在体外快速表达蛋白质的系统。该系统绕过了细菌转化、克隆筛选和细胞裂解等过程,更精准便捷地控制反应底物,减少细菌对蛋白质产生的影响,具有多功能性和灵活性等优点。近年来,TXTL作为一个新兴平台在clusterd regularly interspaced short palindromic repeat (CRISPR)技术研究中应用广泛,实现了对CRISPR/Cas系统快速、便捷地表征,比如高特异性的向导RNA (guide RNA, gRNA)以及抗CRISPR蛋白的筛选。同时,基于TXTL的CRISPR生物传感器与生物材料、基因回路等结合,开发并用于病原体中核酸标志物等的检测,相关试剂冻干后也提高了便携性,实现高灵敏度的即时检测(point-of-care testing, POCT)。传感器与可编程的电路元件等技术的结合为全细胞生物传感器(whole cell biosensor, WCB)提供了一种非生物的替代品,提高了生物安全性,加速了其通过监管机构的批准应用。本文重点介绍并讨论了近些年利用TXTL对CRISPR系统的表征及在生物传感器中的应用,希望能更好地推动CRISPR技术和TXTL在生物传感器方面的发展。

    Abstract:

    Cell-free transcription and translation (TXTL) system is a cell extract-based system for rapid in vitro protein expression. The system bypasses routine laboratory processes such as bacterial transformation, clonal screening and cell lysis, which allows more precise and convenient control of reaction substrates, reduces the impact of bacteria on protein production, and provides a high degree of versatility and flexibility. In recent years, TXTL has been widely used as an emerging platform in clusterd regularly interspaced short palindromic repeat (CRISPR) technologies, enabling more rapid and convenient characterization of CRISPR/Cas systems, including screening highly specific gRNAs as well as anti-CRISPR proteins. Furthermore, TXTL-based CRISPR biosensors combined with biological materials and gene circuits are able to detect pathogens through validation of related antibiotics and nucleic acid-based markers, respectively. The reagents can be freeze-dried to improve portability and achieve point-of-care testing with high sensitivity. In addition, combinations of the sensor with programmable circuit elements and other technologies provide a non-biological alternative to whole-cell biosensors, which can improve biosafety and accelerate its application for approval. Here, this review discusses the TXTL-based characterization of CRISPR and their applications in biosensors, to facilitate the development of TXTL-based CRISPR/Cas systems in biosensors.

    参考文献
    [1] GREGORIO NE, LEVINE MZ, OZA JP. A user's guide to cell-free protein synthesis[J]. Methods and Protocols, 2019, 2(1):24.
    [2] PANDI A, GRIGORAS I, BORKOWSKI O, FAULON JL. Optimizing cell-free biosensors to monitor enzymatic production[J]. ACS Synthetic Biology, 2019, 8(8):1952-1957.
    [3] SILVERMAN AD, KARIM AS, JEWETT MC. Cell-free gene expression:an expanded repertoire of applications[J]. Nature Reviews Genetics, 2020, 21(3):151-170.
    [4] ZHANG J, FU L, TANG T, ZHANG S, ZHU J, LI L, WANG Z, SI T. Scalable mining of proteins for biocatalysis via synthetic biology[J]. Synthetic Biology Journal, 2020, 1(3):319-336.
    [5] LI Y, LIN ZQ, LIU ZH. Advances in yeast based adaptive laboratory evolution[J]. 2021, 2(2):287-301.
    [6] GEORGI V, GEORGI L, BLECHERT M, BERGMEISTER M, ZWANZIG M, WÜSTENHAGEN DA, BIER FF, JUNG E, KUBICK S. On-chip automation of cell-free protein synthesis:new opportunities due to a novel reaction mode[J]. Lab on a Chip, 2016, 16(2):269-281.
    [7] ZHU JW. Mammalian cell protein expression for biopharmaceutical production[J]. Biotechnology Advances, 2012, 30(5):1158-1170.
    [8] GARENNE D, NOIREAUX V. Cell-free transcription-translation:engineering biology from the nanometer to the millimeter scale[J]. Current Opinion in Biotechnology, 2019, 58:19-27.
    [9] MARSHALL R, MAXWELL CS, COLLINS SP, JACOBSEN T, LUO ML, BEGEMANN MB, GRAY BN, JANUARY E, SINGER A, HE YH, BEISEL CL, NOIREAUX V. Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system[J]. Molecular Cell, 2018, 69(1):146-157.e3.
    [10] SILVERMAN AD, AKOVA U, ALAM KK, JEWETT MC, LUCKS JB. Design and optimization of a cell-free atrazine biosensor[J]. ACS Synthetic Biology, 2020, 9(3):671-677.
    [11] JUNG JK, ALAM KK, VEROSLOFF MS, CAPDEVILA DA, DESMAU M, CLAUER PR, LEE JW, NGUYEN PQ, PASTÉN PA, MATIASEK SJ, GAILLARD JF, GIEDROC DP, COLLINS JJ, LUCKS JB. Cell-free biosensors for rapid detection of water contaminants[J]. Nature Biotechnology, 2020, 38(12):1451-1459.
    [12] MAKAROVA KS, HAFT DH, BARRANGOU R, BROUNS SJJ, CHARPENTIER E, HORVATH P, MOINEAU S, MOJICA FJM, WOLF YI, YAKUNIN AF, van der OOST J, KOONIN EV. Evolution and classification of the CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [13] JORE MM, LUNDGREN M, van DUIJN E, BULTEMA JB, WESTRA ER, WAGHMARE SP, WIEDENHEFT B, PUL Ü, WURM R, WAGNER R, BEIJER MR, BARENDREGT A, ZHOU KH, SNIJDERS APL, DICKMAN MJ, DOUDNA JA, BOEKEMA EJ, HECK AJR, van der OOST J, BROUNS SJJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nature Structural & Molecular Biology, 2011, 18(5):529-536.
    [14] KOONIN EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes:common ancestry vs convergence[J]. Biology Direct, 2017, 12(1):5.
    [15] ZAIDI SSEA, MUKHTAR MS, MANSOOR S. Genome editing:targeting susceptibility genes for plant disease resistance[J]. Trends in Biotechnology, 2018, 36(9):898-906.
    [16] WRIGHT AV, NUÑEZ JK, DOUDNA JA. Biology and applications of CRISPR systems:harnessing nature's toolbox for genome engineering[J]. Cell, 2016, 164(1/2):29-44.
    [17] SAKUMA T, YAMAMOTO T. Magic wands of CRISPR-lots of choices for gene knock-in[J]. Cell Biology and Toxicology, 2017, 33(6):501-505.
    [18] JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
    [19] CONG L, RAN FA, COX D, LIN SL, BARRETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
    [20] HUNT JP, ZHAO EL, FREE TJ, SOLTANI M, WARR CA, BENEDICT AB, TAKAHASHI MK, GRIFFITTS JS, PITT WG, BUNDY BC. Towards detection of SARS-CoV-2 RNA in human saliva:a paper-based cell-free toehold switch biosensor with a visual bioluminescent output[J]. New Biotechnology, 2022, 66:53-60.
    [21] JOUNG J, LADHA A, SAITO M, KIM NG, WOOLLEY AE, SEGEL M, BARRETTO RPJ, RANU A, MACRAE RK, FAURE G, IOANNIDI EI, KRAJESKI RN, BRUNEAU R, HUANG MW, YU XG, LI JZ, WALKER BD, HUNG DT, GRENINGER AL, JEROME KR, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. The New England Journal of Medicine, 2020, 383(15):1492-1494.
    [22] PARDEE K, GREEN AA, TAKAHASHI MK, BRAFF D, LAMBERT G, LEE JW, FERRANTE T, MA D, DONGHIA N, FAN M, DARINGER NM, BOSCH I, DUDLEY DM, O'CONNOR DH, GEHRKE L, COLLINS JJ. Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266.
    [23] MAXWELL CS, JACOBSEN T, MARSHALL R, NOIREAUX V, BEISEL CL. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs[J]. Methods, 2018, 143:48-57.
    [24] SHMAKOV S, ABUDAYYEH OO, MAKAROVA KS, WOLF YI, GOOTENBERG JS, SEMENOVA E, MINAKHIN L, JOUNG J, KONERMANN S, SEVERINOV K, ZHANG F, KOONIN EV. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3):385-397.
    [25] KARVELIS T, GASIUNAS G, YOUNG J, BIGELYTE G, SILANSKAS A, CIGAN M, SIKSNYS V. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements[J]. Genome Biology, 2015, 16:253.
    [26] GALIZI R, DUNCAN JN, ROSTAIN W, QUINN CM, STORCH M, KUSHWAHA M, JARAMILLO A. Engineered RNA-interacting CRISPR guide RNAs for genetic sensing and diagnostics[J]. The CRISPR Journal, 2020, 3(5):398-408.
    [27] COLLINS SP, ROSTAIN W, LIAO CY, BEISEL CL. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch[J]. Nucleic Acids Research, 2021, 49(5):2985-2999.
    [28] LI Y, TENG XC, ZHANG KX, DENG RJ, LI JH. RNA strand displacement responsive CRISPR/Cas9 system for mRNA sensing[J]. Analytical Chemistry, 2019, 91(6):3989-3996.
    [29] HWANG S, MAXWELL KL. Meet the anti-CRISPRs:widespread protein inhibitors of CRISPR-Cas systems[J]. The CRISPR Journal, 2019, 2(1):23-30.
    [30] LI YP, BONDY-DENOMY J. Anti-CRISPRs go viral:the infection biology of CRISPR-Cas inhibitors[J]. Cell Host & Microbe, 2021, 29(5):704-714.
    [31] MAHAS A, WANG QC, MARSIC T, MAHFOUZ MM. Development of Cas12a-based cell-free small-molecule biosensors via allosteric regulation of CRISPR array expression[J]. Analytical Chemistry, 2022, 94(11):4617-4626.
    [32] ZHANG LY, GUO W, LU Y. Advances in cell-free biosensors:principle, mechanism, and applications[J]. Biotechnology Journal, 2020, 15(9):e2000187.
    [33] VOYVODIC PL, BONNET J. Cell-free biosensors for biomedical applications[J]. Current Opinion in Biomedical Engineering, 2020, 13:9-15.
    [34] GOOTENBERG JS, ABUDAYYEH OO, KELLNER MJ, JOUNG J, COLLINS JJ, ZHANG F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439-444.
    [35] MYHRVOLD C, FREIJE CA, GOOTENBERG JS, ABUDAYYEH OO, METSKY HC, DURBIN AF, KELLNER MJ, TAN AL, PAUL LM, PARHAM LA, GARCIA KF, BARNES KG, CHAK B, MONDINI A, NOGUEIRA ML, ISERN S, MICHAEL SF, LORENZANA I, YOZWIAK NL, MACINNIS BL, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448.
    [36] NGUYEN PQ, SOENKSEN LR, DONGHIA NM, ANGENENT-MARI NM, de PUIG H, HUANG A, LEE R, SLOMOVIC S, GALBERSANINI T, LANSBERRY G, SALLUM HM, ZHAO EM, NIEMI JB, COLLINS JJ. Wearable materials with embedded synthetic biology sensors for biomolecule detection[J]. Nature Biotechnology, 2021, 39(11):1366-1374.
    [37] GREEN AA, SILVER PA, COLLINS JJ, YIN P. Toehold switches:de-novo-designed regulators of gene expression[J]. Cell, 2014, 159(4):925-939.
    [38] JANSEN R, EMBDEN JD, GAASTRA W, SCHOULS LM. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575.
    [39] KLEINSTIVER BP, TSAI SQ, PREW MS, NGUYEN NT, WELCH MM, LOPEZ JM, MCCAW ZR, ARYEE MJ, JOUNG JK. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells[J]. Nature Biotechnology, 2016, 34(8):869-874.
    [40] ZHANG XH, TEE LY, WANG XG, HUANG QS, YANG SH. Off-target effects in CRISPR/Cas9- mediated genome engineering[J]. Molecular Therapy Nucleic Acids, 2015, 4(11):e264.
    [41] WIMMER F, MOUGIAKOS I, ENGLERT F, BEISEL CL. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons[J]. Molecular Cell, 2022, 82(6):1210-1224.e6.
    [42] JIANG WY, BIKARD D, COX D, ZHANG F, MARRAFFINI LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3):233-239.
    [43] LIN YN, CRADICK TJ, BROWN MT, DESHMUKH H, RANJAN P, SARODE N, WILE BM, VERTINO PM, STEWART FJ, BAO G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Research, 2014, 42(11):7473-7485.
    [44] LEENAY RT, MAKSIMCHUK KR, SLOTKOWSKI RA, AGRAWAL RN, GOMAA AA, BRINER AE, BARRANGOU R, BEISEL CL. Identifying and visualizing functional PAM diversity across CRISPR-cas systems[J]. Molecular Cell, 2016, 62(1):137-147.
    [45] BHAYA D, DAVISON M, BARRANGOU R. CRISPR-Cas systems in bacteria and Archaea:versatile small RNAs for adaptive defense and regulation[J]. Annual Review of Genetics, 2011, 45:273-297.
    [46] MAKAROVA KS, WOLF YI, ALKHNBASHI OS, COSTA F, SHAH SA, SAUNDERS SJ, BARRANGOU R, BROUNS SJJ, CHARPENTIER E, HAFT DH, HORVATH P, MOINEAU S, MOJICA FJM, TERNS RM, TERNS MP, WHITE MF, YAKUNIN AF, GARRETT RA, van der OOST J, BACKOFEN R, KOONIN EV. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11):722-736.
    [47] BONDY-DENOMY J, GARCIA B, STRUM S, DU MJ, ROLLINS MF, HIDALGO-REYES Y, WIEDENHEFT B, MAXWELL KL, DAVIDSON AR. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins[J]. Nature, 2015, 526(7571):136-139.
    [48] MAHENDRA C, CHRISTIE KA, OSUNA BA, PINILLA-REDONDO R, KLEINSTIVER BP, BONDY-DENOMY J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer[J]. Nature Microbiology, 2020, 5(4):620-629.
    [49] WANG XS, LI X, MA YJ, HE JQ, LIU X, YU GM, YIN H, ZHANG H. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA17 and AcrIIA18[J]. Nucleic Acids Research, 2022, 50(1):512-521.
    [50] RAUCH BJ, SILVIS MR, HULTQUIST JF, WATERS CS, MCGREGOR MJ, KROGAN NJ, BONDY-DENOMY J. Inhibition of CRISPR-Cas9 with bacteriophage proteins[J]. Cell, 2017, 168(1/2):150-158.e10.
    [51] LI Y, LI SY, WANG J, LIU GZ. CRISPR/Cas systems towards next-generation biosensing[J]. Trends in Biotechnology, 2019, 37(7):730-743.
    [52] SALEHI ASM, YANG SO, EARL CC, SHAKALLI TANG MJ, PORTER HUNT J, SMITH MT, WOOD DW, BUNDY BC. Biosensing estrogenic endocrine disruptors in human blood and urine:a RAPID cell-free protein synthesis approach[J]. Toxicology and Applied Pharmacology, 2018, 345:19-25.
    [53] GOOTENBERG JS, ABUDAYYEH OO, LEE JW, ESSLETZBICHLER P, DY AJ, JOUNG J, VERDINE V, DONGHIA N, DARINGER NM, FREIJE CA, MYHRVOLD C, BHATTACHARYYA RP, LIVNY J, REGEV A, KOONIN EV, HUNG DT, SABETI PC, COLLINS JJ, ZHANG F. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
    [54] ZETSCHE B, GOOTENBERG JS, ABUDAYYEH OO, SLAYMAKER IM, MAKAROVA KS, ESSLETZBICHLER P, VOLZ SE, JOUNG J, van der OOST J, REGEV A, KOONIN EV, ZHANG F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
    [55] LI SY, CHENG QX, LIU JK, NIE XQ, ZHAO GP, WANG J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Research, 2018, 28(4):491-493.
    [56] MUSTAFA MI, MAKHAWI AM. SHERLOCK and DETECTR:CRISPR-cas systems as potential rapid diagnostic tools for emerging infectious diseases[J]. Journal of Clinical Microbiology, 2021, 59(3):e00745-e00720.
    [57] SHEN-ORR SS, MILO R, MANGAN S, ALON U. Network motifs in the transcriptional regulation network of Escherichia coli[J]. Nature Genetics, 2002, 31(1):64-68.
    [58] TAKAHASHI MK, CHAPPELL J, HAYES CA, SUN ZZ, KIM J, SINGHAL V, SPRING KJ, AL-KHABOURI S, FALL CP, NOIREAUX V, MURRAY RM, LUCKS JB. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems[J]. ACS Synthetic Biology, 2015, 4(5):503-515.
    [59] TAKAHASHI MK, HAYES CA, CHAPPELL J, SUN ZZ, MURRAY RM, NOIREAUX V, LUCKS JB. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions[J]. Methods, 2015, 86:60-72.
    [60] CRISPR/Cas9-based cell-free biosensors for RNA biomarkers[EB/OL].[2022-10-15]. https://2021.igem.org/Team:ZJUT-China.
    [61] myTXTL-Cell-Free expression[EB/OL].[2022-10-15]. https://arborbiosci.com/synthetic-biology/cell-free-protein-expression/mytxtl/.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚夏,胡潇予,王晓祺,葛璟燕. 无细胞系统在CRISPR技术和生物传感器中的应用研究进展[J]. 生物工程学报, 2023, 39(1): 86-102

复制
分享
文章指标
  • 点击次数:897
  • 下载次数: 1326
  • HTML阅读次数: 1393
  • 引用次数: 0
历史
  • 收稿日期:2022-04-30
  • 最后修改日期:2022-10-18
  • 在线发布日期: 2023-02-01
  • 出版日期: 2023-01-25
文章二维码
您是第6453476位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司