蛋白质聚集的三种途径和控制策略
作者:
基金项目:

国家自然科学基金(32001836);山东省自然科学基金(ZR2020QC233)


Three ways for protein aggregation and the control strategies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [107]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蛋白质聚集在生物医药生产中是一个关键问题。在蛋白质的生产、运输和储存的过程中,多种因素都能导致蛋白质发生聚集。随着对蛋白质聚集这一现象的深入研究,发现蛋白质聚集的产生存在不同途径和各种影响因素,如理化因素、翻译修饰和蛋白质结构等。由于蛋白质的聚集对于蛋白质的活性和均一性具有重大影响,因此了解蛋白质聚集的途径以及研究如何控制聚集对获得均质蛋白是十分有意义的。本文主要阐述了3D结构域交换、盐桥的形成、氧化应激3种蛋白质的聚集途径,以及在蛋白质生产、运输、储存过程中控制蛋白质聚集的方法,这有助于减少由于蛋白质聚集体形成而造成的损失,并提高实验研究和商业生产中的蛋白质纯度和均质性。

    Abstract:

    Protein aggregation is a critical issue in the production of biopharmaceuticals. During protein production, transport and storage, various factors can lead to protein aggregation. With the in-depth study, different ways of protein aggregation and various influencing factors were identified. This includes physical and chemical factors, translation modifications and protein structure. Since protein aggregation exerts major impact on the activity and homogeneity of proteins, it is of great importance to study the ways of protein aggregation and how to control it to obtain high-quality proteins. The review focuses on three ways of protein aggregation, namely 3D domain swapping, salt bridge formation, and oxidative stress, as well as methods to control protein aggregation during protein production, transport and storage. This may facilitate reducing the loss caused by the formation of protein aggregation and improving the purity and homogeneity of protein in research and commercial production.

    参考文献
    [1] TRAN LH, URBANOWICZ A, JASIŃSKI M, JASKOLSKI M, RUSZKOWSKI M. 3D domain swapping dimerization of the receiver domain of cytokinin receptor CRE1 from Arabidopsis thaliana and Medicago truncatula[J]. Frontiers in Plant Science, 2021, 12:756341.
    [2] NEALE C, GHANEI H, HOLYOAKE J, BISHOP RE, PRIVÉ GG, POMÈS R. Detergent-mediated protein aggregation[J]. Chemistry and Physics of Lipids, 2013, 169:72-84.
    [3] LAN HR, LIU HJ, YE YL, YIN ZN. The role of surface properties on protein aggregation behavior in aqueous solution of different pH values[J]. AAPS PharmSciTech, 2020, 21(4):122.
    [4] HIROTA S, MASHIMA T, KOBAYASHI N. Use of 3D domain swapping in constructing supramolecular metalloproteins[J]. Chemical Communications:Cambridge, England, 2021, 57(91):12074-12086.
    [5] van der KANT R, KAROW-ZWICK AR, van DURME J, BLECH M, GALLARDO R, SEELIGER D, AßFALG K, BAATSEN P, COMPERNOLLE G, GILS A, STUDTS JM, SCHULZ P, GARIDEL P, SCHYMKOWITZ J, ROUSSEAU F. Prediction and reduction of the aggregation of monoclonal antibodies[J]. Journal of Molecular Biology, 2017, 429(8):1244-1261.
    [6] CHUNG HH, BUCK L, DARIS K, WELBORN B, LUO QZ, WYPYCH J. Investigation of the free heavy chain homodimers of a monoclonal antibody[J]. Biotechnology Progress, 2018, 34(3):738-745.
    [7] MICHALSKA K, KOWIEL M, BIGELOW L, ENDRES M, GILSKI M, JASKOLSKI M, JOACHIMIAK A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase[J]. Acta Crystallographica Section D, Structural Biology, 2020, 76(Pt 2):166-175.
    [8] WERNER TER, BERNSON D, ESBJÖRNER EK, ROCHA S, WITTUNG-STAFSHEDE P. Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(45):27997-28004.
    [9] RAGHUNATHAN S, EL HAGE K, DESMOND JL, ZHANG LX, MEUWLY M. The role of water in the stability of wild-type and mutant insulin dimers[J]. The Journal of Physical Chemistry B, 2018, 122(28):7038-7048.
    [10] FAGAGNINI A, MONTIOLI R, CALOIU A, RIBÓ M, LAURENTS DV, GOTTE G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping[J]. Biochimica et Biophysica Acta:BBA-Proteins and Proteomics, 2017, 1865(1):76-87.
    [11] PARK JW, PISZCZEK G, RHEE SG, CHOCK PB. Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity[J]. Biochemistry, 2011, 50(15):3204-3210.
    [12] IBSTEDT S, SIDERI TC, GRANT CM, TAMÁS MJ. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress[J]. Biology Open, 2014, 3(10):913-923.
    [13] VAGENENDE V, YAP MGS, TROUT BL. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol[J]. Biochemistry, 2009, 48(46):11084-11096.
    [14] HANSTED JG, WEJSE PL, BERTELSEN H, OTZEN DE. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin[J]. Biochimica et Biophysica Acta:BBA-Proteins and Proteomics, 2011, 1814(5):713-723.
    [15] HONG T, IWASHITA K, HAN J, NISHINAMI S, HANDA A, SHIRAKI K. Aggregation of hen egg white proteins with additives during agitation[J]. LWT, 2021, 146:111378.
    [16] CHEN ZL, CHEN J, KESHAMOUNI VG, KANAPATHIPILLAI M. Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro[J]. Biochemical and Biophysical Research Communications, 2017, 489(2):130-134.
    [17] BOLLI R, WOODTLI K, BÄRTSCHI M, HÖFFERER L, LERCH P. l-Proline reduces IgG dimer content and enhances the stability of intravenous immunoglobulin (IVIG) solutions[J]. Biologicals:Journal of the International Association of Biological Standardization, 2010, 38(1):150-157.
    [18] ZHANG T, XU WX, MU YG, DERREUMAUX P. Atomic and dynamic insights into the beneficial effect of the 1,4-naphthoquinon-2-yl- l-tryptophan inhibitor on Alzheimer's Aβ1-42 dimer in terms of aggregation and toxicity[J]. ACS Chemical Neuroscience, 2014, 5(2):148-159.
    [19] ABOUELELA ME, ORABI MAA, ABDELHAMID RA, ABDELKADER MSA, DARWISH FMM, HOTSUMI M, KONNO H. Anti-Alzheimer's flavanolignans from Ceiba pentandra aerial parts[J]. Fitoterapia, 2020, 143:104541.
    [20] SNOW AD, CASTILLO GM, NGUYEN BP, CHOI PY, CUMMINGS JA, CAM J, HU QB, LAKE T, PAN WH, KASTIN AJ, KIRSCHNER DA, WOOD SG, ROCKENSTEIN E, MASLIAH E, LORIMER S, TANZI RE, LARSEN L. The Amazon rain forest plant Uncaria tomentosa (cat's claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles[J]. Scientific Reports, 2019, 9:561.
    [21] SAID MS, NAVALE GR, YADAV A, KHONDE N, SHINDE SS, JHA A. Effect of tert-alcohol functional imidazolium salts on oligomerization and fibrillization of amyloid β (1-42) peptide[J]. Biophysical Chemistry, 2020, 267:106480.
    [22] ZOU XY, HIMBERT S, DUJARDIN A, JUHASZ J, ROS S, STÖVER HDH, RHEINSTÄDTER MC. Curcumin and homotaurine suppress amyloid-β25-35 aggregation in synthetic brain membranes[J]. ACS Chemical Neuroscience, 2021, 12(8):1395-1405.
    [23] SAVOLAINEN MH, YAN X, MYÖHÄNEN TT, HUTTUNEN HJ. Prolyl oligopeptidase enhances α-synuclein dimerization via direct protein-protein interaction[J]. Journal of Biological Chemistry, 2015, 290(8):5117-5126.
    [24] HUMAN P, ILSLEY H, ROBERSON C, GROVENDER E, van ANTWERP B, FOGT E, ZILLA P. Assessment of the immunogenicity of mechanically induced interferon aggregates in a transgenic mouse model[J]. Journal of Pharmaceutical Sciences, 2015, 104(2):722-730.
    [25] DALGICDIR C, SAYAR M. Conformation and aggregation of LKα14 peptide in bulk water and at the air/water interface[J]. The Journal of Physical Chemistry B, 2015, 119(49):15164-15175.
    [26] JUÁREZ J, TABOADA P, MOSQUERA V. Existence of different structural intermediates on the fibrillation pathway of human serum albumin[J]. Biophysical Journal, 2009, 96(6):2353-2370.
    [27] ROUBY G, TRAN NT, LEBLANC Y, TAVERNA M, BIHOREAU N. Investigation of monoclonal antibody dimers in a final formulated drug by separation techniques coupled to native mass spectrometry[J]. mAbs, 2020, 12(1):1781743.
    [28] WEICHERT A, BESEMER AS, LIEBL M, HELLMANN N, KOZIOLLEK-DRECHSLER I, IP P, DECKER H, ROBERTSON J, CHAKRABARTTY A, BEHL C, CLEMENT AM. Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization[J]. Neurobiology of Disease, 2014, 62:479-488.
    [29] JUY M, PENIN F, FAVIER A, GALINIER A, MONTSERRET R, HASER R, DEUTSCHER J, BÖCKMANN A. Dimerization of crh by reversible 3D domain swapping induces structural adjustments to its monomeric homologue hpr[J]. Journal of Molecular Biology, 2003, 332(4):767-776.
    [30] UPADHYAY AK, SOWDHAMINI R. Genome-wide prediction and analysis of 3D-domain swapped proteins in the human genome from sequence information[J]. PLoS One, 2016, 11(7):e0159627.
    [31] HUANG YQ, CAO HQ, LIU ZR. Three-dimensional domain swapping in the protein structure space[J]. Proteins:Structure, Function and Bioinformatics, 2012, 80(6):1610-1619.
    [32] CRESTFIELD AM, STEIN WH, MOORE S. On the aggregation of bovine pancreatic ribonuclease[J]. Archives of Biochemistry and Biophysics, 1962, Suppl 1:217-222.
    [33] BENNETT MJ, CHOE S, EISENBERG D. Domain swapping:entangling alliances between proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(8):3127-3131.
    [34] HIROTA S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping[J]. Journal of Inorganic Biochemistry, 2019, 194:170-179.
    [35] MONTIOLI R, CAMPAGNARI R, FASOLI S, FAGAGNINI A, CALOIU A, SMANIA M, MENEGAZZI M, GOTTE G. RNase A domain- swapped dimers produced through different methods:structure-catalytic properties and antitumor activity[J]. Life:Basel, Switzerland, 2021, 11(2):168.
    [36] STEERE B, EISENBERG D. Characterization of high-order diphtheria toxin oligomers[J]. Biochemistry, 2000, 39(51):15901-15909.
    [37] ROUSSEAU F, SCHYMKOWITZ JW, WILKINSON HR, ITZHAKI LS. Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(10):5596-5601.
    [38] BACARIZO J, MARTINEZ-RODRIGUEZ S, MARTIN-GARCIA JM, ANDUJAR-SANCHEZ M, ORTIZ-SALMERON E, NEIRA JL, CAMARA- ARTIGAS A. Electrostatic effects in the folding of the SH3 domain of the c-src tyrosine kinase:pH- dependence in 3D-domain swapping and amyloid formation[J]. PLoS One, 2014, 9(12):e113224.
    [39] ROUSSEAU F, SCHYMKOWITZ J, ITZHAKI LS. Implications of 3D domain swapping for protein folding, misfolding and function[A]//Advances in Experimental Medicine and Biology[M]. New York, NY:Springer New York, 2012:137-152.
    [40] KOHARUDIN LMI, LIU L, GRONENBORN AM. Different 3D domain-swapped oligomeric cyanovirin- N structures suggest trapped folding intermediates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7702-7707.
    [41] HÅKANSSON M, SVENSSON A, FAST J, LINSE S. An extended hydrophobic core induces EF-hand swapping[J]. Protein Science:a Publication of the Protein Society, 2001, 10(5):927-933.
    [42] CÁMARA-ARTIGAS A, MARTÍNEZ-RODRÍGUEZ S, ORTIZ-SALMERÓN E, MARTÍN-GARCÍA JM. 3D domain swapping in a chimeric c-Src SH3 domain takes place through two hinge loops[J]. Journal of Structural Biology, 2014, 186(1):195-203.
    [43] SHIGA S, YAMANAKA M, FUJIWARA W, HIROTA S, GODA S, MAKABE K. Domain-swapping design by polyproline rod insertion[J]. Chembiochem:a European Journal of Chemical Biology, 2019, 20(19):2454-2457.
    [44] NAGAO S, SUDA A, KOBAYASHI H, SHIBATA N, HIGUCHI Y, HIROTA S. Thermodynamic control of domain swapping by modulating the helical propensity in the hinge region of myoglobin[J]. Chemistry, an Asian Journal, 2020, 15(11):1743-1749.
    [45] NAGAO S, IDOMOTO A, SHIBATA N, HIGUCHI Y, HIROTA S. Rational design of metal-binding sites in domain-swapped myoglobin dimers[J]. Journal of Inorganic Biochemistry, 2021, 217:111374.
    [46] CAHYONO RN, YAMANAKA M, NAGAO S, SHIBATA N, HIGUCHI Y, HIROTA S. 3D domain swapping of azurin from Alcaligenes xylosoxidans[J]. Metallomics, 2020, 12(3):337-345.
    [47] LAWSON CL, BENOFF B, BERGER T, BERMAN HM, CAREY J. E. coli trp repressor forms a domain-swapped array in aqueous alcohol[J]. Structure, 2004, 12(6):1099-1108.
    [48] YANG HX, YAMANAKA M, NAGAO S, YASUHARA K, SHIBATA N, HIGUCHI Y, HIROTA S. Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes[J]. Biochimica et Biophysica Acta:BBA-Proteins and Proteomics, 2019, 1867(11):140265.
    [49] NAGAO S, OSUKA H, YAMADA T, UNI T, SHOMURA Y, IMAI K, HIGUCHI Y, HIROTA S. Structural and oxygen binding properties of dimeric horse myoglobin[J]. Dalton Transactions:Cambridge, England:2003, 2012, 41(37):11378-11385.
    [50] ADAMS JJ, ANDERSON BF, NORRIS GE, CREAMER LK, JAMESON GB. Structure of bovine beta-lactoglobulin (variant A) at very low ionic strength[J]. Journal of Structural Biology, 2006, 154(3):246-254.
    [51] CHOI M, KIM JG, MUNIYAPPAN S, KIM H, KIM TW, LEE Y, LEE SJ, KIM SO, IHEE H. Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics[J]. Chemical Science, 2021, 12(23):8207-8217.
    [52] WANG WJ, RASMUSSEN T, HARDING AJ, BOOTH NA, BOOTH IR, NAISMITH JH. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function[J]. Journal of Molecular Biology, 2012, 415(3):538-546.
    [53] BROTZAKIS ZF, BOLHUIS PG. Unbiased atomistic insight into the mechanisms and solvent role for globular protein dimer dissociation[J]. The Journal of Physical Chemistry B, 2019, 123(9):1883-1895.
    [54] BOOPATHI S, KOLANDAIVEL P. Study on the inter- and intra-peptide salt-bridge mechanism of Aβ23-28 oligomer interaction with small molecules:QM/MM method[J]. Molecular BioSystems, 2015, 11(7):2031-2041.
    [55] HEILMANN M, VELANIS CN, CLOIX C, SMITH BO, CHRISTIE JM, JENKINS GI. Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8[J]. The Plant Journal:for Cell and Molecular Biology, 2016, 88(1):71-81.
    [56] GARDNER KH, CORREA F. How plants see the invisible[J]. Science, 2012, 335(6075):1451-1452.
    [57] BOSSHARD HR, MARTI DN, JELESAROV I. Protein stabilization by salt bridges:concepts, experimental approaches and clarification of some misunderstandings[J]. Journal of Molecular Recognition:JMR, 2004, 17(1):1-16.
    [58] CHAN CH, YU TH, WONG KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding[J]. PLoS One, 2011, 6(6):e21624.
    [59] KISHAN KV, NEWCOMER ME, RHODES TH, GUILLIOT SD. Effect of pH and salt bridges on structural assembly:molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain[J]. Protein Science:a Publication of the Protein Society, 2001, 10(5):1046-1055.
    [60] BASU S, BISWAS P. Salt-bridge dynamics in intrinsically disordered proteins:a trade-off between electrostatic interactions and structural flexibility[J]. Biochimica et Biophysica Acta:BBA-Proteins and Proteomics, 2018, 1866(5/6):624-641.
    [61] ORMEÑO D, ROMERO F, LÓPEZ-FENNER J, AVILA Á, MARTÍNEZ-TORRES A, PARODI J. Ethanol reduces amyloid aggregation in vitro and prevents toxicity in cell lines[J]. Archives of Medical Research, 2013, 44(1):1-7.
    [62] ZHANG M, LI CL,ZHANG YP, PAN JJ, HUANG SJ, LICHAO HE, JIN GF. Impact of salt content and hydrogen peroxide-induced oxidative stress on protein oxidation, conformational/morphological changes, and micro-rheological properties of porcine myofibrillar proteins[J]. Food Chemistry, 2022, 370:131074.
    [63] BETTINGER J, GHAEMMAGHAMI S. Methionine oxidation within the prion protein[J]. Prion, 2020, 14(1):193-205.
    [64] CARMO-GONÇALVES P, PINHEIRO AS, ROMÃO L, CORTINES J, FOLLMER C. UV-induced selective oxidation of Met5 to Met-sulfoxide leads to the formation of neurotoxic fibril-incompetent α-synuclein oligomers[J]. Amyloid, 2014, 21(3):163-174.
    [65] CHENG WQ, ZHENG XY, YANG M. Hydrogen peroxide induced protein oxidation during storage and lyophilization process[J]. Journal of Pharmaceutical Sciences, 2016, 105(6):1837-1842.
    [66] DUERKOP M, BERGER E, DÜRAUER A, JUNGBAUER A. Influence of cavitation and high shear stress on HSA aggregation behavior[J]. Engineering in Life Sciences, 2018, 18(3):169-178.
    [67] FENG BY, WANG ZL, LIU T, JIN R, WANG SB, WANG W, XIAO GF, ZHOU Z. Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein[J]. Biochimica et Biophysica Acta:BBA- Molecular Basis of Disease, 2014, 1842(12):2345-2356.
    [68] ALAVI F, EMAM-DJOMEH Z, MOMEN SM, MOHAMMADIAN M, SALAMI M, MOOSAVI- MOVAHEDI AA. Effect of free radical-induced aggregation on physicochemical and interface-related functionality of egg white protein[J]. Food Hydrocolloids, 2019, 87:734-746.
    [69] GÖBL C, MORRIS VK, DAM LV, VISSCHER M, POLDERRMAN PE, HARTLMÜLLER C, DE RUITER H, HORA M, LIESINGER L, BIMER-GRUENBERGER R, R.VOS H, RELF B, MADI T, B.DANSEN T. Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16 INK4A[J]. Redox Biology, 2020, 28:101316.
    [70] WONG YQ, BINGER KJ, HOWLETT GJ, GRIFFIN MDW. Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):1977-1982.
    [71] JIANG SW, CARROLL L, MARIOTTI M, HÄGGLUND P, DAVIES MJ. Formation of protein cross-links by singlet oxygen-mediated disulfide oxidation[J]. Redox Biology, 2021, 41:101874.
    [72] ZHENG K, REN DY, WANG YJ, LILYESTROM W, SCHERER T, HONG JKY, JI JA. Monoclonal antibody aggregation associated with free radical induced oxidation[J]. International Journal of Molecular Sciences, 2021, 22(8):3952.
    [73] HADA S, KIM NA, LIM DG, LIM JY, KIM KH, ADHIKARY P, JEONG SH. Evaluation of antioxidants in protein formulation against oxidative stress using various biophysical methods[J]. International Journal of Biological Macromolecules, 2016, 82:192-200.
    [74] HE W, ZHANG JY, SACHSENHAUSER V, WANG LL, BARDWELL JCA, QUAN S. Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity[J]. Journal of Biological Chemistry, 2020, 295(42):14488-14500.
    [75] CARBALLO-AMADOR MA, MCKENZIE EA, DICKSON AJ, WARWICKER J. Surface patches on recombinant erythropoietin predict protein solubility:engineering proteins to minimise aggregation[J]. BMC Biotechnology, 2019, 19(1):26.
    [76] CHAN P, CURTIS RA, WARWICKER J. Soluble expression of proteins correlates with a lack of positively-charged surface[J]. Scientific Reports, 2013, 3:3333.
    [77] MOENES EM, AL-GHOBASHY MA, MOHAMED AA, SALEM MY. Comparative assessment of the effect of hyper-glycosylation on the pattern and kinetics of degradation of darbepoetin Alfa using a stability-indicating orthogonal testing protocol[J]. Journal of Chromatography B, 2018, 1072:405-414.
    [78] DENISON FC, GÖKIRMAK T, FERL RJ. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics[J]. Archives of Biochemistry and Biophysics, 2014, 541:1-12.
    [79] MISHRA A, BANSAL R, SREENIVASAN S, DASH R, JOSHI S, SINGH R, RATHORE AS, GOEL G. Structure-based design of small peptide ligands to inhibit early-stage protein aggregation nucleation[J]. Journal of Chemical Information and Modeling, 2020, 60(6):3304-3314.
    [80] ZHENG SZ, SAHIMI A, SHING KS, SAHIMI M. Molecular dynamics study of structure, folding, and aggregation of poly-PR and poly-GR proteins[J]. Biophysical Journal, 2021, 120(1):64-72.
    [81] CROMWELL MEM, HILARIO E, JACOBSON F. Protein aggregation and bioprocessing[J]. The AAPS Journal, 2006, 8(3):E572-E579.
    [82] ONITSUKA M, KAWAGUCHI A, ASANO R, KUMAGAI I, HONDA K, OHTAKE H, OMASA T. Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in bioreactor culture[J]. Journal of Bioscience and Bioengineering, 2014, 117(5):639-644.
    [83] SINHAROY P, AZIZ AH, MAJEWSKA NI, AHUJA S, HANDLOGTEN MW. Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells[J]. Scientific Reports, 2020, 10:16620.
    [84] TORISU T, MARUNO T, HAMAJI Y, OHKUBO T, UCHIYAMA S. Synergistic effect of cavitation and agitation on protein aggregation[J]. Journal of Pharmaceutical Sciences, 2017, 106(2):521-529.
    [85] BHATTACHARJEE S, KIM AS, ELIMELECH M. Concentration polarization of interacting solute particles in cross-flow membrane filtration[J]. Journal of Colloid and Interface Science, 1999, 212(1):81-99.
    [86] LIN WY, ZHANG BY, YE XD, HAWBOLDT K. Sulfate removal using colloid-enhanced ultrafiltration:performance evaluation and adsorption studies[J]. Environmental Science and Pollution Research, 2021, 28(5):5609-5624.
    [87] HAO Y, LIANG C, MORIYA A, MATSUYAMA H, MARUYAMA T. Visualization of protein fouling inside a hollow fiber ultrafiltration membrane by fluorescent microscopy[J]. Industrial & Engineering Chemistry Research, 2012, 51(45):14850-14858.
    [88] ESFAHANI MR, STRETZ HA, WELLS MJM. Comparing humic acid and protein fouling on polysulfone ultrafiltration membranes:adsorption and reversibility[J]. Journal of Water Process Engineering, 2015, 6:83-92.
    [89] VATANPOUR V, RABIEE H, DAVOOD ABADI FARAHANI MH, MASTERI-FARAHANI M, NIAKAN M. Preparation and characterization of novel nanoporous SBA-16-COOH embedded polysulfone ultrafiltration membrane for protein separation[J]. Chemical Engineering Research and Design, 2020, 156:240-250.
    [90] ARAKAWA T, EJIMA D, AKUTA T. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes[J]. International Journal of Biological Macromolecules, 2017, 95:1153-1158.
    [91] GOYON A, BECK A, VEUTHEY JL, GUILLARME D, FEKETE S. Comprehensive study on the effects of sodium and potassium additives in size exclusion chromatographic separations of protein biopharmaceuticals[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144:242-251.
    [92] MORTAZAVI M, SHOKRGOZAR MA, SARDARI S, AZADMANESH K, MAHDIAN R, KAGHAZIAN H, HOSSEINI SN, SHAMS E. Physicochemical screening for chemical stabilizer of erythropoietin to prevent its aggregation[J]. Preparative Biochemistry & Biotechnology, 2018, 48(2):121-127.
    [93] LABER JR, DEAR BJ, MARTINS ML, JACKSON DE, DIVENERE A, GOLLIHAR JD, ELLINGTON AD, TRUSKETT TM, JOHNSTON KP, MAYNARD JA. Charge shielding prevents aggregation of supercharged GFP variants at high protein concentration[J]. Molecular Pharmaceutics, 2017, 14(10):3269-3280.
    [94] HUTCHINGS RL, SINGH SM, CABELLO- VILLEGAS J, MALLELA KMG. Effect of antimicrobial preservatives on partial protein unfolding and aggregation[J]. Journal of Pharmaceutical Sciences, 2013, 102(2):365-376.
    [95] MADADLOU A, ZAMANI S, LU YX, ABBASPOURRAD A. Effect of surfactant addition on particle properties of whey proteins and their subsequent complexation with salivary proteins[J]. International Dairy Journal, 2018, 87:107-113.
    [96] RANDOLPH TW, SCHILTZ E, SEDERSTROM D, STEINMANN D, MOZZICONACCI O, SCHÖNEICH C, FREUND E, RICCI MS, CARPENTER JF, LENGSFELD CS. Do not drop:mechanical shock in vials causes cavitation, protein aggregation, and particle formation[J]. Journal of Pharmaceutical Sciences, 2015, 104(2):602-611.
    [97] DENG JJ, YANG RF, LU HQ. Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field[J]. Ultrasonics Sonochemistry, 2021, 71:105371.
    [98] VILLALOBOS AP, GUNTURI SR, HEAVNER GA. Interaction of polysorbate 80 with erythropoietin:a case study in protein-surfactant interactions[J]. Pharmaceutical Research, 2005, 22(7):1186-1194.
    [99] BANERJEE P, MONDAL S, BAGCHI B. Effect of ethanol on insulin dimer dissociation[J]. The Journal of Chemical Physics, 2019, 150(8):084902.
    [100] FAYED BE, TAWFIK AF, YASSIN AEB. Optimization of amino acid-stabilized erythropoietin parenteral formulation:in vitro and in vivo assessment[J]. Acta Pharmaceutica:Zagreb, Croatia, 2016, 66(1):69-82.
    [101] CAPPER MJ, WRIGHT GSA, BARBIERI L, LUCHINAT E, MERCATELLI E, MCALARY L, YERBURY JJ, O'NEILL PM, ANTONYUK SV, BANCI L, HASNAIN SS. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation[J]. Nature Communications, 2018, 9:1693.
    [102] BANERJEE S. Effect of glyoxal and 1-methylisatin on stress-induced fibrillation of hen egg white lysozyme:insight into the anti-amyloidogenic property of the compounds with possible therapeutic implications[J]. International Journal of Biological Macromolecules, 2020, 165:1552-1561.
    [103] JIANG X, FANG GD, DONG L, JIN PF, DING L, ZHANG HZ, FAN JM, MAO SZ, FAN XF, GONG YS, WANG YY. Chemical chaperone 4-phenylbutyric acid alleviates the aggregation of human familial pulmonary fibrosis-related mutant SP-A2 protein in part through effects on GRP78[J]. Biochimica et Biophysica Acta:BBA-Molecular Basis of Disease, 2018, 1864(10):3546-3557.
    [104] RAJAN R, MATSUMURA K. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels[J]. Scientific Reports, 2017, 7:45777.
    [105] AGRAWAL NJ, KUMAR S, WANG XL, HELK B, SINGH SK, TROUT BL. Aggregation in protein-based biotherapeutics:computational studies and tools to identify aggregation-prone regions[J]. Journal of Pharmaceutical Sciences, 2011, 100(12):5081-5095.
    [106] FERMANI S, CALVARESI M, MANGINI V, FALINI G, BOTTONI A, NATILE G, ARNESANO F. Aggregation pathways of native-like ubiquitin promoted by single-point mutation, metal ion concentration, and dielectric constant of the medium[J]. Chemistry:Weinheim an Der Bergstrasse, Germany, 2018, 24(16):4140-4148.
    [107] WOLWERTZ ML, NGUYEN PT, QUITTOT N, BOURGAULT S. Probing the role of λ6 immunoglobulin light chain dimerization in amyloid formation[J]. Biochimica et Biophysica Acta:BBA- Proteins and Proteomics, 2016, 1864(4):409-418.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任自强,张海灵,林江,朱希强,林剑. 蛋白质聚集的三种途径和控制策略[J]. 生物工程学报, 2023, 39(1): 103-115

复制
分享
文章指标
  • 点击次数:1301
  • 下载次数: 3400
  • HTML阅读次数: 3440
  • 引用次数: 0
历史
  • 收稿日期:2022-04-08
  • 最后修改日期:2022-06-06
  • 在线发布日期: 2023-02-01
  • 出版日期: 2023-01-25
文章二维码
您是第6678368位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司