自组装在多肽药物中的应用
作者:
基金项目:

军队生物安全研究专项(19SWAQ06);国家重点研发计划(2021YFC2103900)


Application of self-assembly in polypeptide drugs: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    自组装是指分子、纳米级结构材料等基本单元自发地组装成一个稳定而又紧密结构的过程。多肽可在各种非共价驱动力下自组装形成纳米纤维、纳米层状结构、胶束等不同的形貌。因多肽具有氨基酸序列明确、易于合成、便于设计等优势,多肽自组装技术成为了近年来的一个研究热点。有研究表明,对某些多肽类药物进行自组装设计或者使用自组装肽材料作为药物递送的载体,可以解决药物自身存在的半衰期短、水溶性差、生理屏障穿透率低等问题。本文重点介绍了自组装多肽的形成机制、自组装形貌、影响因素、自组装设计方法及其在生物医学领域的主要应用,为多肽的高效利用提供参考。

    Abstract:

    Self-assembly refers to the spontaneous process where basic units such as molecules and nanostructured materials form a stable and compact structure. Peptides can self-assemble by non-covalent driving forces to form various morphologies such as nanofibers, nano layered structures, and micelles. Peptide self-assembly technology has become a hot research topic in recent years due to the advantages of definite amino acid sequences, easy synthesis and design of peptides. It has been shown that the self-assembly design of certain peptide drugs or the use of self-assembled peptide materials as carriers for drug delivery can solve the problems such as short half-life, poor water solubility and poor penetration due to physiological barrier. This review summarizes the formation mechanism of self-assembled peptides, self-assembly morphology, influencing factors, self-assembly design methods and major applications in biomedical field, providing a reference for the efficient use of peptides.

    参考文献
    [1] MENDES AC, BARAN ET, REIS RL, AZEVEDO HS. Self-assembly in nature:using the principles of nature to create complex nanobiomaterials[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2013, 5(6):582-612.
    [2] GHADIRI MR, GRANJA JR, MILLIGAN RA, MCREE DE, KHAZANOVICH N. Self-assembling organic nanotubes based on a cyclic peptide architecture[J]. Nature, 1993, 366(6453):324-327.
    [3] ZHANG S, LOCKSHIN C, COOK R, RICH A. Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide[J]. Biopolymers, 1994, 34(5):663-672.
    [4] 沙翔宇. 多肽自组装在构建响应型生物功能材料中的应用[D]. 镇江:江苏大学硕士学位论文, 2020. SHA XY. The role of peptide self-assembly in the construction of responsive biofunctional materials[D]. Zhenjiang:Master's Thesis of Jiangsu University, 2020(in Chinese).
    [5] LA MANNA S, DI NATALE C, ONESTO V, MARASCO D. Self-assembling peptides:from design to biomedical applications[J]. International Journal of Molecular Sciences, 2021, 22(23):12662.
    [6] 周希蕊. 自组装抗肿瘤多肽的设计合成、表征和作用机制研究[D]. 北京:北京化工大学博士学位论文, 2017. ZHOU XR. Design, characterization and acting mechanism studies of self-assembling anticancer peptides[D]. Beijing:Doctoral Dissertation of Beijing University of Chemical Technology, 2017(in Chinese).
    [7] ANANTHANARAYANAN B, LITTLE L, SCHAFFER DV, HEALY KE, TIRRELL M. Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides[J]. Biomaterials, 2010, 31(33):8706-8715.
    [8] KUANG Y, SHI J, LI J, YUAN D, ALBERTI KA, XU Q, XU B. Pericellular hydrogel/nanonets inhibit cancer cells[J]. Angewandte Chemie:International Ed in English, 2014, 53(31):8104-8107.
    [9] LUO XM, HUO QQ, LIU XH, ZHENG C, LIU Y. Effect of hydrophilic or hydrophobic interactions on the self-assembly behavior and micro-morphology of a collagen mimetic peptide[J]. Journal of Leather Science and Engineering, 2021, 3:11.
    [10] PARAMONOV SE, JUN HW, HARTGERINK JD. Self-assembly of peptide-amphiphile nanofibers:the roles of hydrogen bonding and amphiphilic packing[J]. Journal of the American Chemical Society, 2006, 128(22):7291-7298.
    [11] TAO K, WANG JQ, ZHOU P, WANG CD, XU H, ZHAO XB, LU J. Self-assembly of short aβ(16-22) peptides:effect of terminal capping and the role of electrostatic interaction[J]. Langmuir, 2011, 27(6):2723-2730.
    [12] 谢子龙. 芳香基团对多肽自组装的影响[D]. 东营:中国石油大学(华东)硕士学位论文, 2017. XIE ZL. The effect of aromatic group on peptide self-assembly[D]. Dongying:Master's Thesis of China University of Petroleum (Huadong), 2017(in Chinese).
    [13] WANG TT, XIA YY, GAO JQ, XU DH, HAN M. Recent progress in the design and medical application of in situ self-assembled polypeptide materials[J]. Pharmaceutics, 2021, 13(5):753.
    [14] JIANG XL, FAN XB, XU W, ZHAO CG, WU HL, ZHANG R, WU GQ. Self-assembled peptide nanoparticles responsive to multiple tumor microenvironment triggers provide highly efficient targeted delivery and release of antitumor drug[J]. Journal of Controlled Release, 2019, 316:196-207.
    [15] HUAN YC, KONG Q, TANG QJ, WANG YM, MOU HJ, YING R, LI CJ. Antimicrobial peptides/ciprofloxacin-loaded O-carboxymethyl chitosan/self- assembling peptides hydrogel dressing with sustained-release effect for enhanced anti-bacterial infection and wound healing[J]. Carbohydrate Polymers, 2022, 280:119033.
    [16] DREHER MR, SIMNICK AJ, FISCHER K, SMITH RJ, PATEL A, SCHMIDT M, CHILKOTI A. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles[J]. Journal of the American Chemical Society, 2008, 130(2):687-694.
    [17] 王蒙. 氨基酸手性及侧链性质对多肽自组装行为影响的研究[D]. 东营:中国石油大学(华东)博士学位论文, 2017. WANG M. The effect of amino acid chirality and side chain property on peptide self-assembly[D]. Dongying:Doctoral Dissertation of China University of Petroleum (Huadong), 2017(in Chinese).
    [18] SANTOSO S, HWANG W, HARTMAN H, ZHANG SG. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles[J]. Nano Letters, 2002, 2(7):687-691.
    [19] HU Y, LIN R, ZHANG P, FERN J, CHEETHAM AG, PATEL K, SCHULMAN R, KAN C, CUI H. Electrostatic-driven lamination and untwisting of β-sheet assemblies[J]. ACS Nano, 2016, 10(1):880-888.
    [20] YUAN YY, MAO CQ, DU XJ, DU JZ, WANG F, WANG J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor[J]. Advanced Materials, 2012, 24(40):5476-5480.
    [21] MURA S, NICOLAS J, COUVREUR P. Stimuli- responsive nanocarriers for drug delivery[J]. Nature Materials, 2013, 12(11):991-1003.
    [22] LIANG J, WU WL, XU XD, ZHUO RX, ZHANG XZ. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier[J]. Colloids and Surfaces B:Biointerfaces, 2014, 114:398-403.
    [23] XIONG MH, BAO Y, XU X, WANG H, HAN ZY, WANG ZY, LIU YQ, HUANG SY, SONG ZY, CHEN JJ, PEEK RM Jr, YIN LC, CHEN LF, CHENG JJ. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(48):12675-12680.
    [24] LIU FH, CONG Y, QI GB, JI L, QIAO ZY, WANG H. Near-infrared laser-driven in situ self-assembly as a general strategy for deep tumor therapy[J]. Nano Letters, 2018, 18(10):6577-6584.
    [25] 卢士英, 任洪林, 柳增善, 赵广英, 华育平. 组织蛋白酶B研究进展[J]. 河北师范大学学报(自然科学版), 2004, 28(3):306-309. LU SY, REN HL, LIU ZS, ZHAO GY, HUA YP. The progress of study on the cathepsin B[J]. Journal of Hebei Normal University (Natural Science Edition), 2004, 28(3):306-309(in Chinese).
    [26] KARAVASILI C, FATOUROS DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications[J]. Advanced Drug Delivery Reviews, 2021, 174:387-405.
    [27] YANG Z, LIANG G, XU B. Enzymatic hydrogelation of small molecules[J]. Accounts of Chemical Research, 2008, 41(2):315-326.
    [28] GAO Y, ZHANG C, CHANG J, YANG C, LIU J, FAN S, REN C. Enzyme-instructed self-assembly of a novel histone deacetylase inhibitor with enhanced selectivity and anticancer efficiency[J]. Biomaterials Science, 2019, 7(4):1477-1485.
    [29] MARINI DM, HWANG W, LAUFFENBURGER DA, ZHANG SG, KAMM RD. Left-handed helical ribbon intermediates in the self-assembly of a β-sheet peptide[J]. Nano Letters, 2002, 2(4):295-299.
    [30] LEE D, REJINOLD NS, JEONG SD, KIM YC. Stimuli-responsive polypeptides for biomedical applications[J]. Polymers, 2018, 10(8):E830.
    [31] SHI YG, LI D, DING JF, HE CL, CHEN XS. Physiologically relevant pH- and temperature- responsive polypeptide hydrogels with adhesive properties[J]. Polymer Chemistry, 2021, 12(19):2832-2839.
    [32] ABDELGHANI M, SHAO J, LE DHT, WU H, van HEST JCM. Self-assembly or coassembly of multiresponsive histidine-containing elastin-like polypeptide block copolymers[J]. Macromolecular Bioscience, 2021, 21(6):e2100081.
    [33] MORODER L, MUSIOL HJ. Insulin-from its discovery to the industrial synthesis of modern insulin analogues[J]. Angewandte Chemie:International Ed in English, 2017, 56(36):10656-10669.
    [34] ABDUALKADER AM, GHAWI AM, ALAAMA M, AWANG M, MERZOUK A. Leech therapeutic applications[J]. Indian Journal of Pharmaceutical Sciences, 2013, 75(2):127-137.
    [35] ZHOU XR, CAO YM, ZHANG Q, TIAN XB, DONG H, CHEN L, LUO SZ. Self-assembly nanostructure controlled sustained release, activity and stability of peptide drugs[J]. International Journal of Pharmaceutics, 2017, 528(1/2):723-731.
    [36] BLANCO E, SHEN HF, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9):941-951.
    [37] CHENG DB, WANG D, GAO YJ, WANG L, QIAO ZY, WANG H. Autocatalytic morphology transformation platform for targeted drug accumulation[J]. Journal of the American Chemical Society, 2019, 141(10):4406-4411.
    [38] MA L, HUANG SJ, XIE H, MA PP, JIA B, YAO YF, GAO YX, LI WY, SONG JJ, ZHANG W. Influence of chain length on the anticancer activity of the antimicrobial peptide CAMEL with fatty acid modification[J]. European Journal of Medicinal Chemistry, 2022, 239:114557.
    [39] 吉垒, 张雪豪, 杨子欣, 乔增莹, 王浩. 肿瘤微环境诱导多肽聚合物原位组装行为研究[J]. 高分子学报, 2019, 50(6):642-652. JI L, ZHANG XH, YANG ZX, QIAO ZY, WANG H. Microenvironment-induced in situ self-assembly of polymer-peptide conjugates[J]. Acta Polymerica Sinica, 2019, 50(6):642-652(in Chinese).
    [40] ALLEN TM, CULLIS PR. Drug delivery systems:entering the mainstream[J]. Science, 2004, 303(5665):1818-1822.
    [41] MAKVANDI P, JAMALEDIN R, CHEN GJ, BAGHBANTARAGHDARI Z, ZARE EN, di NATALE C, ONESTO V, VECCHIONE R, LEE J, TAY FR, NETTI P, MATTOLI V, JAKLENEC A, GU Z, LANGER R. Stimuli-responsive transdermal microneedle patches[J]. Materials Today, 2021, 47:206-222.
    [42] SONG SJ, CHOI JS. Enzyme-responsive amphiphilic peptide nanoparticles for biocompatible and efficient drug delivery[J]. Pharmaceutics, 2022, 14(1):143.
    [43] XING RR, LI SK, ZHANG N, SHEN GZ, MÖHWALD H, YAN XH. Self-assembled injectable peptide hydrogels capable of triggering antitumor immune response[J]. Biomacromolecules, 2017, 18(11):3514-3523.
    [44] GUO RC, ZHANG XH, FAN PS, SONG BL, LI ZX, DUAN ZY, QIAO ZY, WANG H. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization[J]. Angewandte Chemie:International Ed in English, 2021, 60(47):25128-25134.
    [45] WAN S, BORLAND S, RICHARDSON SM, MERRY CLR, SAIANI A, GOUGH JE. Self-assembling peptide hydrogel for intervertebral disc tissue engineering[J]. Acta Biomaterialia, 2016, 46:29-40.
    [46] ANDERSON JM, VINES JB, PATTERSON JL, CHEN HY, JAVED A, JUN HW. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium[J]. Acta Biomaterialia, 2011, 7(2):675-682.
    [47] KONG J, ZHANG J, WANG Y, QI W, RAO H, HU L, SU R, HE Z. Bioinspired pH-sensitive fluorescent peptidyl nanoparticles for cell imaging[J]. ACS Applied Materials & Interfaces, 2020, 12(4):4212-4220.
    [48] QIAN YX, WANG WZ, WANG ZH, JIA XQ, HAN QJ, ROSTAMI I, WANG YH, HU ZY. pH-triggered peptide self-assembly for targeting imaging and therapy toward angiogenesis with enhanced signals[J]. ACS Applied Materials & Interfaces, 2018, 10(9):7871-7881.
    [49] ZHAO W, XIONG Y, ZHANGSUN D, LUO S. DSPE-PEG modification of α-conotoxin TxID[J]. Marine Drugs, 2019, 17(6):E342.
    [50] ZHANG C, JIN S, XUE X, ZHANG T, JIANG Y, WANG PC, LIANG XJ. Tunable self-assembly of irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells[J]. Journal of Materials Chemistry B, 2016, 4(19):3286-3291.
    [51] LIU T, LI P, JIN H, DING Q, ZOU Z, PENG G. Influence of designer self-assembling nanofiber scaffolds containing anti-cancer peptide motif on hepatoma carcinoma cells[J]. Journal of Biomedical Materials Research Part A, 2017, 105(8):2329-2334.
    [52] ZHANG SG. Fabrication of novel biomaterials through molecular self-assembly[J]. Nature Biotechnology, 2003, 21(10):1171-1178.
    [53] BOOTHROYD S, SAIANI A, SAIANI A, MILLER AF. Controlling network topology and mechanical properties of co-assembling peptide hydrogels[J]. Biopolymers, 2014, 101(6):669-680.
    [54] CAO SQ, LIU YP, SHANG H, LI SY, JIANG J, ZHU XF, ZHANG P, WANG XL, LI JS. Supramolecular nanoparticles of calcitonin and dipeptide for long-term controlled release[J]. Journal of Controlled Release, 2017, 256:182-192.
    [55] TIAN X, SUN F, ZHOU XR, LUO SZ, CHEN L. Role of peptide self-assembly in antimicrobial peptides[J]. Journal of Peptide Science, 2015, 21(7):530-539.
    [56] CHEN L, PATRONE N, LIANG JF. Peptide self-assembly on cell membranes to induce cell lysis[J]. Biomacromolecules, 2012, 13(10):3327-3333.
    [57] FAN RR, YUAN YY, ZHANG Q, ZHOU XR, JIA LL, LIU ZQ, YU CY, LUO SZ, CHEN L. Isoleucine/leucine residues at "a" and "d" positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide[J]. Amino Acids, 2017, 49(1):193-202.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王越,丁秀仿,张泗达,张瑞华,陈东,徐建富,陈龙. 自组装在多肽药物中的应用[J]. 生物工程学报, 2023, 39(1): 177-191

复制
相关视频

分享
文章指标
  • 点击次数:985
  • 下载次数: 2348
  • HTML阅读次数: 2272
  • 引用次数: 0
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-09-28
  • 在线发布日期: 2023-02-01
  • 出版日期: 2023-01-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司