Dickkopf相关蛋白1抑制肺炎支原体P1-C诱导小鼠肺上皮细胞过度分泌MUC5AC
作者:
基金项目:

国家自然科学基金(31960036);宁夏回族自治区自然科学基金(2020AAC03259)


Dickkopf-1 inhibits the secretion of MUC5AC induced by Mycoplasma pneumoniae P1-C in mouse lung epithelial cells<
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肺炎支原体(Mycoplasma pneumoniae)是儿童和成人最常见的呼吸道感染病原体。临床观察肺炎支原体感染会引起呼吸道黏液大量分泌,给患者呼吸造成困难,已有研究表明肺炎支原体感染会引起大量黏蛋白5AC (mucin 5AC, MUC5AC)的分泌。肺炎支原体P1黏附素通过介导病原体与宿主细胞的黏附在肺炎支原体感染的发病机制中发挥重要作用,其中P1的C-末端残基(P1-C)具有免疫原性。本研究探讨了Wnt (Wingless, Wnt)/β-catenin信号通路抑制因子Dickkopf-1 (Dickkopf-1, DKK1)在肺炎支原体P1-C诱导的肺上皮细胞分泌黏蛋白MUC5AC的分子机制。利用扫描电镜(scanning electron microscope, SEM)、苏木精-伊红(hematoxylin-eosin, HE)染色观察肺炎支原体P1-C对小鼠肺上皮细胞(mouse airway epithelial cells, MAECs)黏液分泌的影响;利用蛋白芯片技术检测肺炎支原体P1-C对小鼠气道上皮细胞炎症因子分泌及对相关信号通路的富集分析;采用糖原染色(periodic acid schiff stain, PAS)、Tunel染色、Masson染色检测肺炎支原体P1-C对小鼠肺的损伤情况;采用免疫组化检测黏蛋白MUC5AC的分泌情况,采用蛋白免疫印迹检测DKK1调控肺炎支原体P1-C蛋白诱导小鼠肺上皮细胞分泌黏蛋白MUC5AC的分子机制。结果表明,肺炎支原体P1-C能够引起小鼠原代上皮细胞大量黏液和炎性因子的分泌,在肺炎支原体P1-C感染中,DKK1能下调JAK激酶2 (janus kinase 2, JAK2)、磷酸化信号传导与转录激活因子1 (phosphorylation signal transducer and activator of transcription 1, p-STAT1)和磷酸化信号传导与转录激活因子3 (phosphorylation signal transducer and activator of transcription 3, p-STAT3)蛋白的表达;同时,DKK1过表达显著上调MUC5AC抑制转录因子叉头框蛋白A2 (fork-head box A2, FOXA2)的表达,从而显著抑制了肺炎支原体P1-C诱导的MUC5AC的表达。通过该研究推测DKK1通过抑制JAK/STAT1-STAT3信号通路以及上调FOXA2的表达有效地减少肺炎支原体P1-C诱导的小鼠肺上皮细胞MUC5AC的分泌。

    Abstract:

    Mycoplasma pneumoniae is the most common pathogen of respiratory tract infection in children and adults. Clinical observation shows that M. pneumoniae infection can cause massive mucus secretion in the respiratory tract, which makes the breathing of patients difficult. Studies have shown that M. pneumoniae infection can cause massive secretion of mucin 5AC (MUC5AC). Adhesin P1 plays an important role in the pathogenesis of M. pneumoniae infection by mediating the adhesion of pathogens to host cells, and the C-terminal residues of P1 (P1-C) are immunogenic. This study investigated the molecular mechanism of Wnt/β-catenin signaling pathway inhibitor Dickkopf-1 (DKK1) in the secretion of MUC5AC in mouse airway epithelial cells (MAECs) induced by P1-C. Scanning electron microscope and hematoxylin-eosin staining were used to observe the effect of P1-C on mucus secretion of MAECs. Protein chip was used to detect the secretion of cytokines and analyse the enrichment of related signaling pathways induced by P1-C in MAECs. Periodic acid schiff stain (PAS) staining, Tunel staining and Masson staining were used to detect the damage of the lungs of mouse exposed to P1-C. Immunohistochemistry was used to detect the secretion of MUC5AC expression, and Western blotting was used to reveal the molecular mechanism of DKK1-regulated secretion of MUC5AC induced by P1-C protein in MACES. The results showed that P1-C induced the massive secretion of mucus and inflammatory factors in MAECs. During P1-C infection, DKK1 down-regulated janus kinase 2 (JAK2), phosphorylation signaling and transcription activator 1 (p-STAT1) and phosphorylation signaling and activator of transcription 3 (p-STAT3) expression. Overexpression of DKK1 significantly up-regulated the expression of MUC5AC repressor transcription factor fork-head box protein A2 (FOXA2). At the same time, the expression of MUC5AC induced by P1-C was inhibited significantly. It is speculated that DKK1 can effectively reduce the secretion of MUC5AC in MAECs induced by P1-C by inhibiting the JAK/STAT1-STAT3 signaling pathway and up-regulating the expression of FOXA2.

    参考文献
    [1] CHU HW, JEYASEELAN S, RINO JG, VOELKER DR, WEXLER RB, CAMPBELL K, HARBECK RJ, MARTIN RJ. TLR2 signaling is critical for Mycoplasma pneumoniae-induced airway mucin expression[J]. The Journal of Immunology, 2005, 174(9):5713-5719.
    [2] KRAFT M, ADLER KB, INGRAM JL, CREWS AL, ATKINSON TP, CAIRNS CB, KRAUSE DC, CHU HW. Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma[J]. The European Respiratory Journal, 2008, 31(1):43-46.
    [3] WAITES KB, BALISH MF, ATKINSON TP. New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections[J]. Future Microbiology, 2008, 3(6):635-648.
    [4] SUTHERLAND ER, BRANDORFF JM, MARTIN RJ. Atypical bacterial pneumonia and asthma risk[J]. Journal of Asthma, 2004, 41(8):863-868.
    [5] WIDJAJA M, BERRY IJ, JAROCKI VM, PADULA MP, DUMKE R, DJORDJEVIC SP. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules[J]. Scientific Reports, 2020, 10(1):6384.
    [6] HAO YH, KUANG ZZ, JING J, MIAO JF, MEI LY, LEE RJ, KIM S, CHOE S, KRAUSE DC, LAU GW. Mycoplasma pneumoniae modulates STAT3-STAT6/EGFR-FOXA2 signaling to induce overexpression of airway mucins[J]. Infection and Immunity, 2014, 82(12):5246-5255.
    [7] LACHOWICZ-SCROGGINS ME, YUAN SP, KERR SC, DUNICAN EM, YU M, CARRINGTON SD, FAHY JV. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 194(10):1296-1299.
    [8] ROSE MC, VOYNOW JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease[J]. Physiological Reviews, 2006, 86(1):245-278.
    [9] FAHY JV, DICKEY BF. Airway mucus function and dysfunction[J]. The New England Journal of Medicine, 2010, 363(23):2233-2247.
    [10] KUYPER LM, PARÉ PD, HOGG JC, LAMBERT RK, IONESCU D, WOODS R, BAI TR. Characterization of airway plugging in fatal asthma[J]. The American Journal of Medicine, 2003, 115(1):6-11.
    [11] HOGG JC, CHU F, UTOKAPARCH S, WOODS R, ELLIOTT WM, BUZATU L, CHERNIACK RM, ROGERS RM, SCIURBA FC, COXSON HO, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease[J]. The New England Journal of Medicine, 2004, 350(26):2645-2653.
    [12] KOEPPEN M, MCNAMEE EN, BRODSKY KS, AHERNE CM, FAIGLE M, DOWNEY GP, COLGAN SP, EVANS CM, SCHWARTZ da, ELTZSCHIG HK. Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury[J]. Mucosal Immunology, 2013, 6(4):762-775.
    [13] HAO YH, KUANG ZZ, WALLING BE, BHATIA S, SIVAGURU M, CHEN Y, GASKINS HR, LAU GW. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2[J]. Cellular Microbiology, 2012, 14(3):401-415.
    [14] WAN HJ, KAESTNER KH, ANG SL, IKEGAMI M, FINKELMAN FD, STAHLMAN MT, FULKERSON PC, ROTHENBERG ME, WHITSETT JA. Foxa2 regulates alveolarization and goblet cell hyperplasia[J]. Development, 2004, 131(4):953-964.
    [15] PARK SW, VERHAEGHE C, NGUYENVU LT, BARBEAU R, EISLEY CJ, NAKAGAMI Y, HUANG XZ, WOODRUFF PG, FAHY JV, ERLE DJ. Distinct roles of FOXA2 and FOXA3 in allergic airway disease and asthma[J]. American Journal of Respiratory and Critical Care Medicine, 2009, 180(7):603-610.
    [16] MALINAUSKAS T, JONES EY. Extracellular modulators of Wnt signalling[J]. Current Opinion in Structural Biology, 2014, 29:77-84.
    [17] NIEHRS C. Function and biological roles of the Dickkopf family of Wnt modulators[J]. Oncogene, 2006, 25(57):7469-7481.
    [18] MAO BY, NIEHRS C. Kremen2 modulates Dickkopf2 activity during Wnt/lRP6 signaling[J]. Gene, 2003, 302(1/2):179-183.
    [19] LIANG LB, HE H, LÜ RX, ZHANG M, HUANG HJ, AN ZM, LI SQ. Preliminary mechanism on the methylation modification of Dkk-1 and Dkk-3 in hepatocellular carcinoma[J]. Tumor Biology, 2015, 36(2):1245-1250.
    [20] DONG LL, QU LY, CHU LY, ZHANG XH, LIU YH. Serum level of DKK-1 and its prognostic potential in non-small cell lung cancer[J]. Diagnostic Pathology, 2014, 9(5):1746-1596.
    [21] KLAVDIANOU K, LIOSSIS SN, DAOUSSIS D. Dkk1:a key molecule in joint remodelling and fibrosis[J]. Mediterranean Journal of Rheumatology, 2017, 28(4):174-182.
    [22] XUE J, YANG JL, YANG LJ, ZHOU SL, JI C, WANG XM, YU N, LIU XM, CHI SH. Dickkopf-1 is a biomarker for systemic lupus erythematosus and active lupus nephritis[J]. Journal of Immunology Research, 2017, 2017:6861575.
    [23] CAI Q, MA J, WANG J, WANG JY, CUI JD, WU S, WANG ZJ, WANG N, WANG JQ, YANG DD, YANG JL, XUE J, LI F, CHEN J, LIU XM. Adenoviral transduction of Dickkopf-1 alleviates silica-induced silicosis development in lungs of mice[J]. Human Gene Therapy, 2022, 33(3/4):155-174.
    [24] YANG J, HOOPER WC, PHILLIPS DJ, TALKINGTON DF. Cytokines in Mycoplasma pneumoniae infections[J]. Cytokine &
    Growth Factor Reviews, 2004, 15(2/3):157-168.
    [25] FOY HM. Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients[J]. Clinical Infectious Diseases, 1993, 17(supplement_1):S37-S46.
    [26] RASTAWICKI W, RÄTY R, KLEEMOLA M. Detection of antibodies to Mycoplasma pneumoniae adhesin P1 in serum specimens from infected and non-infected subjects by immunoblotting[J]. Diagnostic Microbiology and Infectious Disease, 1996, 26(3/4):141-143.
    [27] SCHURWANZ N, JACOBS E, DUMKE R. Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development[J]. Infection and Immunity, 2009, 77(11):5007-5015.
    [28] RAZIN S, JACOBS E. Mycoplasma adhesion[J]. Journal of General Microbiology, 1992, 138(3):407-422.
    [29] HIRSCHBERG L, HOLME T, KROOK A. Human antibody response to the major adhesin of Mycoplasma pneumoniae:increase in titers against synthetic peptides in patients with pneumonia[J]. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 1991, 99(6):515-520.
    [30] TUUMINEN T, SUNI J, KLEEMOLA M, JACOBS E. Improved sensitivity and specificity of enzyme immunoassays with P1-adhesin enriched antigen to detect acute Mycoplasma pneumoniae infection[J]. Journal of Microbiological Methods, 2001, 44(1):27-37.
    [31] SETO S, KENRI T, TOMIYAMA T, MIYATA M. Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions[J]. Journal of Bacteriology, 2005, 187(5):1875-1877.
    [32] CHAUDHRY R, NISAR N, HORA B, CHIRASANI SR, MALHOTRA P. Expression and immunological characterization of the carboxy-terminal region of the P1 adhesin protein of Mycoplasma pneumoniae[J]. Journal of Clinical Microbiology, 2005, 43(1):321-325.
    [33] SOTGIU S, PUGLIATTI M, ROSATI G, DEIANA GA, SECHI GP. Neurological disorders associated with Mycoplasma pneumoniae infection[J]. European Journal of Neurology, 2003, 10(2):165-168.
    [34] HILDEBRAND F, VENNER M, GIGUÈRE S. Efficacy of gamithromycin for the treatment of foals with mild to moderate bronchopneumonia[J]. Journal of Veterinary Internal Medicine, 2015, 29(1):333-338.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石娟,马春骥,郝秀静,罗海霞,李敏. Dickkopf相关蛋白1抑制肺炎支原体P1-C诱导小鼠肺上皮细胞过度分泌MUC5AC[J]. 生物工程学报, 2023, 39(1): 248-261

复制
分享
文章指标
  • 点击次数:271
  • 下载次数: 932
  • HTML阅读次数: 820
  • 引用次数: 0
历史
  • 收稿日期:2022-07-01
  • 最后修改日期:2022-10-10
  • 在线发布日期: 2023-02-01
  • 出版日期: 2023-01-25
文章二维码
您是第6508044位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司