奥奈达希瓦氏菌电活性生物被膜的研究进展
作者:
基金项目:

天津市自然科学基金(15JCZDJC41100)


Advances in electrochemically active biofilm of Shewanella oneidensis MR-1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [111]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面对日益严峻的能源紧缺与环境污染形势,电活性微生物(electroactive microorganisms)的电催化过程为实现绿色生产提供了新的思路。奥奈达希瓦氏菌具有独特的呼吸方式和电子传递能力,在微生物燃料电池、增值化学品的生物电合成、金属废物处理和环境修复系统等领域有着广泛的应用。奥奈达希瓦氏菌(Shewanella oneidensis MR-1)电活性生物被膜是实现电活性微生物电子传递过程的优良载体,其形成过程十分复杂且受到多种因素的影响和调控,在增强细菌环境抗逆性、提高电子传递效率等多方面发挥着十分重要的作用。本文较为系统地综述了奥奈达希瓦氏菌生物被膜的形成过程、影响因素及其在生物能源、生物修复和生物传感中的相关应用,为进一步实现其在更多领域的应用提供了理论基础。

    Abstract:

    Facing the increasingly severe energy shortage and environmental pollution, electrocatalytic processes using electroactive microorganisms provide a new alternative for achieving environmental-friendly production. Because of its unique respiratory mode and electron transfer ability, Shewanella oneidensis MR-1 has been widely used in the fields of microbial fuel cell, bioelectrosynthesis of value-added chemicals, metal waste treatment and environmental remediation system. The electrochemically active biofilm of S. oneidensis MR-1 is an excellent carrier for transferring the electrons of the electroactive microorganisms. The formation of electrochemically active biofilm is a dynamic and complex process, which is affected by many factors, such as electrode materials, culture conditions, strains and their metabolism. The electrochemically active biofilm plays a very important role in enhancing bacterial environmental stress resistance, improving nutrient uptake and electron transfer efficiency. This paper reviewed the formation process, influencing factors and applications of S. oneidensis MR-1 biofilm in bio-energy, bioremediation and biosensing, with the aim to facilitate and expand its further application.

    参考文献
    [1] LOGAN BE. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5):375-381.
    [2] MANN EE, WOZNIAK DJ. Pseudomonas biofilm matrix composition and niche biology[J]. FEMS Microbiology Reviews, 2012, 36(4):893-916.
    [3] FLEMMING HC, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
    [4] O'TOOLE G, KAPLAN HB, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54:49-79.
    [5] KOCH C, HARNISCH F. Is there a specific ecological niche for electroactive microorganisms?[J]. ChemElectroChem, 2016, 3(9):1282-1295.
    [6] VENKATESWARAN K, MOSER DP, DOLLHOPF ME, LIES DP, SAFFARINI DA, MACGREGOR BJ, RINGELBERG DB, WHITE DC, NISHIJIMA M, SANO H, BURGHARDT J, STACKEBRANDT E, NEALSON KH. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov.[J] International Journal of Systematic Bacteriology, 1999, 49:705-724.
    [7] LEUNG DHL, LIM YS, UMA K, PAN GT, LIN JH, CHONG SW, YANG TCK. Engineering S. oneidensis for performance improvement of microbial fuel cell-a mini review[J]. Applied Biochemistry and Biotechnology, 2021, 193(4):1170-1186.
    [8] YIN W, WANG YT, LIU L, HE J. Biofilms:the microbial "protective clothing" in extreme environments[J]. International Journal of Molecular Sciences, 2019, 20(14):3423.
    [9] BERNE C, ELLISON CK, DUCRET A, BRUN YV. Bacterial adhesion at the single-cell level[J]. Nature Reviews Microbiology, 2018, 16(10):616-627.
    [10] BELAS R. Biofilms, flagella, and mechanosensing of surfaces by bacteria[J]. Trends in Microbiology, 2014, 22(9):517-527.
    [11] HUG I, DESHPANDE S, SPRECHER KS, PFOHL T, JENAL U. Second messenger-mediated tactile response by a bacterial rotary motor[J]. Science, 2017, 358(6362):531-534.
    [12] PERSAT A, INCLAN YF, ENGEL JN, STONE HA, GITAI Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24):7563-7568.
    [13] GÖDEKE J, BINNENKADE L, THORMANN KM. Transcriptome analysis of early surface-associated growth of Shewanella oneidensis MR-1[J]. PLoS One, 2012, 7(7):e42160.
    [14] KIMKES TEP, HEINEMANN M. How bacteria recognise and respond to surface contact[J]. FEMS Microbiology Reviews, 2020, 44(1):106-122.
    [15] YANG L, HU YF, LIU Y, ZHANG JD, ULSTRUP J, MOLIN S. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development[J]. Environmental Microbiology, 2011, 13(7):1705-1717.
    [16] HEYDORN A, NIELSEN AT, HENTZER M, STERNBERG C, GIVSKOV M, ERSBØLL BK, MOLIN S. Quantification of biofilm structures by the novel computer program COMSTAT[J]. Microbiology:Reading, England, 2000, 146(Pt 10):2395-2407.
    [17] ZHOU GQ, YUAN J, GAO HC. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis[J]. Frontiers in Microbiology, 2015, 6:790.
    [18] THORMANN KM, DUTTLER S, SAVILLE RM, HYODO M, SHUKLA S, HAYAKAWA Y, SPORMANN AM. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP[J]. Journal of Bacteriology, 2006, 188(7):2681-2691.
    [19] de BEER D, STOODLEY P, ROE F, LEWANDOWSKI Z. Effects of biofilm structures on oxygen distribution and mass transport[J]. Biotechnology and Bioengineering, 1994, 43(11):1131-1138.
    [20] van HOUDT R, MICHIELS CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation[J]. Research in Microbiology, 2005, 156(5/6):626-633.
    [21] ZHANG X, PRÉVOTEAU A, LOURO RO, PAQUETE CM, RABAEY K. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure[J]. Biosensors & Bioelectronics, 2018, 121:183-191.
    [22] THORMANN KM, SAVILLE RM, SHUKLA S, SPORMANN AM. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms[J]. Journal of Bacteriology, 2005, 187(3):1014-1021.
    [23] SAUER K, CAMPER AK, EHRLICH GD, COSTERTON JW, DAVIES DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm[J]. Journal of Bacteriology, 2002, 184(4):1140-1154.
    [24] ORAM J, JEUKEN LJC. A re-evaluation of electron-transfer mechanisms in microbial electrochemistry:Shewanella releases iron that mediates extracellular electron transfer[J]. ChemElectroChem, 2016, 3(5):829-835.
    [25] YANG Y, WU YC, HU YD, CAO YX, POH CL, CAO B, SONG H. Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell[J]. ACS Catalysis, 2015, 5(11):6937-6945.
    [26] NG CK, XU JB, CAI Z, YANG L, THOMPSON IP, HUANG WE, CAO B. Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes[J]. Microbial Biotechnology, 2020, 13(6):1904-1916.
    [27] WU YD, LUO XB, QIN BL, LI FB, HÄGGBLOM MM, LIU TX. Enhanced current production by exogenous electron mediators via synergy of promoting biofilm formation and the electron shuttling process[J]. Environmental Science & Technology, 2020, 54(12):7217-7225.
    [28] YANG CH, ASLAN H, ZHANG P, ZHU SJ, XIAO Y, CHEN LX, KHAN N, BOESEN T, WANG YL, LIU Y, WANG L, SUN Y, FENG YJ, BESENBACHER F, ZHAO F, YU M. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement[J]. Nature Communications, 2020, 11(1):1379.
    [29] ZHAO CE, WU JS, DING YZ, WANG V, ZHANG YD, KJELLEBERG S, LOO J, CAO B, ZHANG QC. Hybrid conducting biofilm with built-in bacteria for high- performance microbial fuel cells[J]. ChemElectroChem, 2015, 2(5):654-658.
    [30] CHEN SY, CHEN XY, HOU SY, XIONG PH, XIONG Y, ZHANG F, YU HQ, LIU G, TIAN YC. A gold microarray electrode on a poly(methylmethacrylate) substrate to improve the performance of microbial fuel cells by modifying biofilm formation[J]. RSC Advances, 2016, 6(115):114937-114943.
    [31] LI Z, ZHANG P, QIU Y, ZHANG ZH, WANG X, YU YL, FENG YJ. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems[J]. Science of the Total Environment, 2021, 762:143142.
    [32] ZAJDEL TJ, BARUCH M, MÉHES G, STAVRINIDOU E, BERGGREN M, MAHARBIZ MM, SIMON DT, AJO-FRANKLIN CM. PEDOT:PSS-based multilayer bacterial- composite films for bioelectronics[J]. Scientific Reports, 2018, 8:15293.
    [33] TSENG CP, LIU FX, ZHANG X, HUANG PC, CAMPBELL I, LI YL, ATKINSON JT, TERLIER T, AJO-FRANKLIN CM, SILBERG JJ, VERDUZCO R. Solution- deposited and patternable conductive polymer thin-film electrodes for microbial bioelectronics[J]. Advanced Materials:Deerfield Beach, Fla, 2022, 34(13):e2109442.
    [34] SUN M, ZHANG F, TONG ZH, SHENG GP, CHEN YZ, ZHAO Y, CHEN YP, ZHOU SY, LIU G, TIAN YC, YU HQ. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J]. Biosensors and Bioelectronics, 2010, 26(2):338-343.
    [35] KALATHIL S, PANT D. Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems[J]. RSC Advances, 2016, 6(36):30582-30597.
    [36] RODIONOV DA, YANG C, LI XQ, RODIONOVA IA, WANG YB, OBRAZTSOVA AY, ZAGNITKO OP, OVERBEEK R, ROMINE MF, REED S, FREDRICKSON JK, NEALSON KH, OSTERMAN AL. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus[J]. BMC Genomics, 2010, 11:494.
    [37] LIN T, BAI X, YANG Y, WANG JY, HU YD, LI BZ, YUAN YJ, SONG H. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell[J]. AIChE Journal, 2017, 63(6):1830-1838.
    [38] XIAO Y, CHEN G, CHEN Z, BAI R, ZHAO BY, TIAN XC, WU YC, ZHOU X, ZHAO F. Interspecific competition by non-exoelectrogenic Citrobacter freundii An1 boosts bioelectricity generation of exoelectrogenic Shewanella oneidensis MR-1[J]. Biosensors and Bioelectronics, 2021, 194:113614.
    [39] HENGGE R. Principles of c-di-GMP signalling in bacteria[J]. Nature Reviews Microbiology, 2009, 7(4):263-273.
    [40] LIU T, YU YY, DENG XP, NG CK, CAO B, WANG JY, RICE SA, KJELLEBERG S, SONG H. Enhanced Shewanella biofilm promotes bioelectricity generation[J]. Biotechnology and Bioengineering, 2015, 112(10):2051-2059.
    [41] GAMBARI C, BOYELDIEU A, ARMITANO J, MÉJEAN V, JOURLIN-CASTELLI C. Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis[J]. Environmental Microbiology, 2019, 21(1):81-97.
    [42] ARINDA T, PHILIPP LA, REHNLUND D, EDEL M, CHODORSKI J, STÖCKL M, HOLTMANN D, ULBER R, GESCHER J, STURM-RICHTER K. Addition of riboflavin-coupled magnetic beads increases current production in bioelectrochemical systems via the increased formation of anode- biofilms[J]. Frontiers in Microbiology, 2019, 10:126.
    [43] LIN ZX, LONG ML, LIU W, LIU TX, LI FB, WU YD. Distinct biofilm formation regulated by different culture media:implications to electricity generation[J]. Bioelectrochemistry:Amsterdam, Netherlands, 2021, 140:107826.
    [44] ZHANG P, LIU J, QU YP, FENG YJ. Enhanced Shewanella oneidensis MR-1 anode performance by adding fumarate in microbial fuel cell[J]. Chemical Engineering Journal, 2017, 328:697-702.
    [45] WU D, XING DF, LU L, WEI M, LIU BF, REN NQ. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs[J]. Bioresource Technology, 2013, 135:630-634.
    [46] XU YS, ZHENG T, YONG XY, ZHAI DD, SI RW, LI B, YU YY, YONG YC. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells[J]. Bioresource Technology, 2016, 211:542-547.
    [47] LARROSA-GUERRERO A, SCOTT K, HEAD IM, MATEO F, GINESTA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12):3985-3994.
    [48] GADKARI S, FONTMORIN JM, YU E, SADHUKHAN J. Influence of temperature and other system parameters on microbial fuel cell performance:numerical and experimental investigation[J]. Chemical Engineering Journal, 2020, 388:124176.
    [49] LIU W, WU YD, LIU TX, LI FB, DONG H, JING MQ. Influence of incubation temperature on 9,10- anthraquinone-2-sulfonate (AQS)-mediated extracellular electron transfer[J]. Frontiers in Microbiology, 2019, 10:464.
    [50] BUTTI SK, VELVIZHI G, SULONEN MLK, HAAVISTO JM, OGUZ KOROGLU EO, CETINKAYA AY, SINGH S, ARYA D, MODESTRA JA, KRISHNA KV. Microbial electrochemical technologies with the perspective of harnessing bioenergy:maneuvering towards upscaling[J]. Renewable and Sustainable Energy Reviews, 2015, 53:462-476.
    [51] SARATALE GD, SARATALE RG, SHAHID MK, ZHEN GY, KUMAR G, SHIN HS, CHOI YG, KIM SH. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs)[J]. Chemosphere, 2017, 178:534-547.
    [52] YONG YC, CAI Z, YU YY, CHEN P, JIANG RR, CAO B, SUN JZ, WANG JY, SONG H. Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells[J]. Bioresource Technology, 2013, 130:763-768.
    [53] MAHMOUD RH, GOMAA OM, HASSAN RYA. Bio-electrochemical frameworks governing microbial fuel cell performance:technical bottlenecks and proposed solutions[J]. RSC Advances, 2022, 12(10):5749-5764.
    [54] PINCHUK GE, GEYDEBREKHT OV, HILL EA, REED JL, KONOPKA AE, BELIAEV AS, FREDRICKSON JK. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions[J]. Applied and Environmental Microbiology, 2011, 77(23):8234-8240.
    [55] BAO H, ZHENG ZW, YANG B, LIU D, LI FF, ZHANG XW, LI ZJ, LEI LC. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode[J]. Bioelectrochemistry, 2016, 109:95-100.
    [56] MCLEAN JS, PINCHUK GE, GEYDEBREKHT OV, BILSKIS CL, ZAKRAJSEK BA, HILL EA, SAFFARINI DA, ROMINE MF, GORBY YA, FREDRICKSON JK, BELIAEV AS. Oxygen- dependent autoaggregation in Shewanella oneidensis MR-1[J]. Environmental Microbiology, 2008, 10(7):1861-1876.
    [57] LU MQ, CHAN S, BABANOVA S, BRETSCHGER O. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems[J]. Biotechnology and Bioengineering, 2017, 114(1):96-105.
    [58] KOUZUMA A. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(7):1572-1581.
    [59] ZHANG JC, HE J, ZHAI CH, MA LZ, GU LC, ZHAO K. Effects of PslG on the surface movement of Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2018, 84(13):e00219- e00218.
    [60] ZHANG WC, WANG Y, LU HN, LIU Q, WANG CD, HU W, ZHAO K. Dynamics of solitary predation by Myxococcus xanthus on Escherichia coli observed at the single-cell level[J]. Applied and Environmental Microbiology, 2020, 86(3):e02286-e02219.
    [61] ZHANG WC, LUO M, FENG CY, LIU HQ, ZHANG H, BENNETT RR, UTADA AS, LIU Z, ZHAO K. Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment[J]. eLife, 2021, 10:e60655.
    [62] FREDRICKSON JK, ROMINE MF, BELIAEV AS, AUCHTUNG JM, DRISCOLL ME, GARDNER TS, NEALSON KH, OSTERMAN AL, PINCHUK G, REED JL, RODIONOV DA, ROFRIGUES JLM, SAFFARINI DA, SERRES MH, SPORMANN AM, ZHULIN IB, TIEDJE JM. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology, 2008, 6(8):592-603.
    [63] SHI L, RICHARDSON DJ, WANG ZM, KERISIT SN, ROSSO KM, ZACHARA JM, FREDRICKSON JK. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer[J]. Environmental Microbiology Reports, 2009, 1(4):220-227.
    [64] FLYNN JM, ROSS DE, HUNT KA, BOND DR, GRALNICK JA. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria[J]. mBio, 2010, 1(5):e00190-e00110.
    [65] LI SW, ZENG RJ, SHENG GP. An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells[J]. Biochemical Engineering Journal, 2017, 118:20-24.
    [66] XIONG JJ, CHAN DD, GUO XX, CHANG FY, CHEN MM, WANG QH, SONG X, WU C. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1[J]. Applied Microbiology and Biotechnology, 2020, 104(12):5579-5591.
    [67] PENG ZF, SHI MM, XIA KM, DONG YR, SHI L. Degradation of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1[J]. Environmental Pollution, 2020, 266:115413.
    [68] MARSHALL MJ, BELIAEV AS, DOHNALKOVA AC, KENNEDY DW, SHI L, WANG ZM, BOYANOV MI, LAI B, KEMNER KM, MCLEAN JS, REED SB, CULLEY DE, BAILEY VL, SIMONSON CJ, SAFFARINI DA, ROMINE MF, ZACHARA JM, FREDRICKSON JK. C-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis[J]. PLoS Biology, 2006, 4(9):e268.
    [69] XIONG YJ, SHI L, CHEN BW, MAYER M, LOWER B, LONDER Y, BOSE S, HOCHELLA M, FREDRICKSON J, SQUIER T. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA[J]. Journal of the American Chemical Society, 2006, 128(43):13978-13979.
    [70] HAN JC, CHEN GJ, QIN LP, MU Y. Metal respiratory pathway-independent Cr isotope fractionation during Cr(VI) reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2017, 4(11):500-504.
    [71] LEE SY, KIM DH, KIM KW. The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1[J]. Chemosphere, 2018, 194:515-522.
    [72] de WINDT W, AELTERMAN P, VERSTRAETE W. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls[J]. Environmental Microbiology, 2005, 7(3):314-325.
    [73] KIM MG, KIM DH, KIM T, PARK S, KWON G, KIM MS, SHIN TJ, AHN H, HUR HG. Unusual Li-ion storage through anionic redox processes of bacteria-driven tellurium nanorods[J]. Journal of Materials Chemistry A, 2015, 3(33):16978-16987.
    [74] MCFARLANE IR, LAZZARI-DEAN JR, EL- NAGGAR MY. Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers[J]. Acta Biomaterialia, 2015, 13:364-373.
    [75] SONG XJ, YANG F, WANG XF, ZHANG KH. Shewanella oneidensis MR-1in situ biosynthesis of Ag nanoparticles on TiO2 nanotubes with enhanced photocatalytic performance[J]. Micro & Nano Letters, 2020, 15(14):1007-1011.
    [76] SEKAR R, DICHRISTINA TJ. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane[J]. Environmental Science & Technology, 2014, 48(21):12858-12867.
    [77] WU YM, XIAO X, XU CC, CAO DM, DU DL. Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions[J]. Applied Microbiology and Biotechnology, 2013, 97(16):7439-7446.
    [78] ASAD S, AMOOZEGAR MA, POURBABAEE AA, SARBOLOUKI MN, DASTGHEIB SMM. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria[J]. Bioresource Technology, 2007, 98(11):2082-2088.
    [79] HONG YG, GU JD. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain[J]. Applied Microbiology and Biotechnology, 2010, 88(3):637-643.
    [80] XIE QQ, LU Y, TANG L, ZENG GM, YANG ZH, FAN CZ, WANG JJ, Atashgahi S. The mechanism and application of bidirectional extracellular electron transport in the field of energy and environment[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(17):1924-1969.
    [81] HARTSHORNE RS, REARDON CL, ROSS D, NUESTER J, CLARKE TA, GATES AJ, MILLS PC, FREDRICKSON JK, ZACHARA JM, SHI L, BELIAEV AS, MARSHALL MJ, TIEN M, BRANTLEY S, BUTT JN, RICHARDSON DJ. Characterization of an electron conduit between bacteria and the extracellular environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52):22169-22174.
    [82] NTARLAGIANNIS D, ATEKWANA EA, HILL EA, GORBY Y. Microbial nanowires:is the subsurface "hardwired"?[J]. Geophysical Research Letters, 2007, 34(17):L17305.
    [83] TREMBLAY PL, ZHANG T. Electrifying microbes for the production of chemicals[J]. Frontiers in Microbiology, 2015, 6:201.
    [84] ROSS DE, FLYNN JM, BARON DB, GRALNICK JA, BOND DR. Towards electrosynthesis in shewanella:energetics of reversing the mtr pathway for reductive metabolism[J]. PLoS One, 2011, 6(2):e16649.
    [85] LE QAT, KIM HG, KIM YH. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst[J]. Enzyme and Microbial Technology, 2018, 116:1-5.
    [86] LA JA, JEON JM, SANG BI, YANG YH, CHO EC. A hierarchically modified graphite cathode with Au nanoislands, cysteamine, and Au nanocolloids for increased electricity-assisted production of isobutanol by engineered Shewanella oneidensis MR-1[J]. ACS Applied Materials & Interfaces, 2017, 9(50):43563-43574.
    [87] LOGAN BE, CALL D, CHENG SA, HAMELERS HVM, SLEUTELS THJA, JEREMIASSE AW, ROZENDAL RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23):8630-8640.
    [88] LOGAN BE, ROSSI R, RAGAB A, SAIKALY PE. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews Microbiology, 2019, 17(5):307-319.
    [89] WANG W, ZHANG BG, HE Z. Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells[J]. Electrochimica Acta, 2019, 318:794-800.
    [90] JIANG SH, KIM MG, KIM IY, HWANG SJ, HUR HG. Biological synthesis of free-standing uniformed goethite nanowires by Shewanella sp. HN-41[J]. Journal of Materials Chemistry A, 2013, 1(5):1646-1650.
    [91] LOVLEY DR. E-biologics:Fabrication of sustainable electronics with "green" biological materials[J]. mBio, 2017, 8(3):e00695-e00617.
    [92] SUN YL, TANG HY, RIBBE A, DUZHKO V, WOODARD TL, WARD JE, BAI Y, NEVIN KP, NONNENMANN SS, RUSSELL T, EMRICK T, LOVLEY DR. Conductive composite materials fabricated from microbially produced protein nanowires[J]. Small:Weinheim an Der Bergstrasse, Germany, 2018, 14(44):e1802624.
    [93] LOVLEY DR. Live wires:direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination[J]. Energy & Environmental Science, 2011, 4(12):4896.
    [94] ZHANG YP, LI GQ, WEN J, XU YG, SUN J, NING XN, LU XW, WANG YJ, YANG ZY, YUAN Y. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems[J]. Chemosphere, 2018, 196:377-385.
    [95] BRETSCHGER O, OBRAZTSOVA A, STURM CA, CHANG IS, GORBY YA, REED SB, CULLEY DE, REARDON CL, BARUA S, ROMINE MF, ZHOU JZ, BELIAEV AS, BOUHENNI R, SAFFARINI D, MANSFELD F, KIM BH, FREDRICKSON JK, NEALSON KH. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants[J]. Applied and Environmental Microbiology, 2007, 73(21):7003-7012.
    [96] OYEWUMI O, SCHREIBER ME. Using column experiments to examine transport of As and other trace elements released from poultry litter:implications for trace element mobility in agricultural watersheds[J]. Environmental Pollution:Barking, Essex:1987, 2017, 227:223-233.
    [97] LI WG, CHEN F, ZHONG R, CHEN CH. Biochar-mediated degradation of roxarsone by Shewanella oneidensis MR-1[J]. Frontiers in Microbiology, 2022, 13:846228.
    [98] LIU DF, MIN D, CHENG L, ZHANG F, LI DB, XIAO X, SHENG GP, YU HQ. Anaerobic reduction of 2,6-dinitrotoluene by Shewanella oneidensis MR-1:roles of Mtr respiratory pathway and NfnB[J]. Biotechnology and Bioengineering, 2017, 114(4):761-768.
    [99] CAI PJ, XIAO X, HE YR, LI WW, YU L, LAM MHW, YU HQ. Involvement of c-type cytochrome CymA in the electron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensis MR-1[J]. Biochemical Engineering Journal, 2012, 68:227-230.
    [100] YAN FF, HE YR, WU C, CHENG YY, LI WW, YU HQ. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2014, 1(1):128-132.
    [101] ZHOU JC, HONG SH. Establishing efficient bisphenol A degradation by engineering Shewanella oneidensis[J]. Industrial & Engineering Chemistry Research, 2021, 60(47):16864-16873.
    [102] YOU JP, DENG YY, CHEN H, YE JX, ZHANG SH, ZHAO JK. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 252:126571.
    [103] GAO SH, PENG L, LIU YW, ZHOU X, NI BJ, BOND PL, LIANG B, WANG AJ. Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode[J]. International Biodeterioration & Biodegradation, 2016, 115:250-256.
    [104] LI Q, FENG XL, LU XR, LI TT, HAN X, XIAO X, WU XY, LIU ZY, YANG MF, FENG YJ. Combined intra- and extracellular reduction involved in the anaerobic biodecolorization of cationic azo dye by Shewanella oneidensis MR-1[J]. Chemosphere, 2018, 211:701-708.
    [105] XIAO X, XU CC, WU YM, CAI PJ, LI WW, DU DL, YU HQ. Biodecolorization of naphthol green B dye by Shewanella oneidensis MR-1 under anaerobic conditions[J]. Bioresource Technology, 2012, 110:86-90.
    [106] ZHAO MY, CUI ZC, FU L, NDAYISENGA F, ZHOU DD. Shewanella drive Fe(III) reduction to promote electro-Fenton reactions and enhance Fe inner-cycle[J]. ACS ES&T Water, 2021, 1(3):613-620.
    [107] ZANG YX, ZHAO T, XIE BZ, FENG Y, YI Y, LIU H. A bio-electrochemical sensor based on suspended Shewanella oneidensis MR-1 for the sensitive assessment of water biotoxicity[J]. Sensors and Actuators B:Chemical, 2021, 341:130004.
    [108] WEBSTER DP, TERAVEST MA, DOUD DFR, CHAKRAVORTY A, HOLMES EC, RADENS CM, SUREKA S, GRALNICK JA, ANGENENT LT. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system[J]. Biosensors and Bioelectronics, 2014, 62:320-324.
    [109] QI X, WANG SY, JIANG Y, LIU PP, LI QC, HAO W, HAN JB, ZHOU YX, HUANG X, LIANG P. Artificial electrochemically active biofilm for improved sensing performance and quickly devising of water quality early warning biosensors[J]. Water Research, 2021, 198:117164.
    [110] YANG Y, YU YY, WANG YZ, ZHANG CL, WANG JX, FANG Z, LV HY, ZHONG JJ, YONG YC. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin[J]. Biosensors and Bioelectronics, 2017, 98:338-344.
    [111] YU YY, WANG JX, SI RW, YANG Y, ZHANG CL, YONG YC. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor[J]. Analytica Chimica Acta, 2017, 985:148-154.
    相似文献
    引证文献
引用本文

姜淼,李艳冉. 奥奈达希瓦氏菌电活性生物被膜的研究进展[J]. 生物工程学报, 2023, 39(3): 881-897

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-14
  • 录用日期:2022-09-22
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司