铜绿假单胞菌中S型绿脓杆菌素与荧光嗜铁素的功能协同性分析
作者:
基金项目:

国家重点研发计划(2020YFA0906900,2018YFA0902700);中国科学院科研仪器设备研制项目(YJKYYQ20200033)


Functional synergism of pyoverdine and the S-type pyocins of Pseudomonas aeruginosa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在铜绿假单胞菌(Pseudomonas aeruginosa)中,S型绿脓杆菌素S2和S4与细菌中的铁载体荧光嗜铁素(pyoverdine)使用相同的摄取通道,表明二者之间存在某些联系。本研究表征了细菌中3个S型绿脓杆菌素(Pys2、PA3866、PyoS5)的单细菌基因表达分布,并研究了S2型绿脓杆菌素对细菌摄取荧光嗜铁素的影响。结果表明,在DNA损伤压力下,S型绿脓杆菌素基因的表达在细菌种群中呈现出高度分化,外源加入S2型绿脓杆菌素会减少细菌对荧光嗜铁素的摄取,因此S2型绿脓杆菌素的存在会阻止不合成荧光嗜铁素的“欺骗者”摄取环境中荧光嗜铁素,进而减弱其对活性氧(reactive oxygen species, ROS)压力的抵抗能力。另外我们发现,在细菌中过表达SOS响应(SOS response)调节因子PrtN时,荧光嗜铁素相关合成基因的表达量显著降低,进而导致荧光嗜铁素的总合成量和外分泌量显著降低。以上结果表明细菌中SOS压力响应系统与铁摄取系统的功能是存在相互联系的。

    Abstract:

    Pyocin S2 and S4 in Pseudomonas aeruginosa use the same uptake channels as the pyoverdine does in bacteria, indicating a possible connection between them. In this study, we characterized the single bacterial gene expression distribution of three S-type pyocins (Pys2, PA3866, and PyoS5) and examined the impact of pyocin S2 on bacterial uptake of pyoverdine. The findings demonstrated that the expression of the S-type pyocin genes was highly differentiated in bacterial population under DNAdamage stress. Moreover, exogenous addition of pyocin S2 reduces the bacterial uptake of pyoverdine so that the presence of pyocin S2 prevents the uptake of environmental pyoverdine by non-pyoverdine synthesizing 'cheaters', thereby reducing their resistance to oxidative stress. Furthermore, we discovered that overexpression of the SOS response regulator PrtN in bacteria significantly decreased the expression of genes involved in the synthesis of pyoverdine, significantly decreasing the overall synthesis and exocytosis of pyoverdine. These findings imply a connection between the function of the iron absorption system and the SOS stress response mechanism in bacteria.

    参考文献
    [1] SCHURR MJ, YU H, BOUCHER JC, HIBLER NS, DERETIC V. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 1995, 177(19):5670-5679.
    [2] KINDRACHUK KN, FERNÁNDEZ L, BAINS M, HANCOCK REW. Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(5):1874-1882.
    [3] GILLELAND HE JR, MURRAY RG. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 1976, 125(1):267-281.
    [4] CHUANCHUEN R, KARKHOFF-SCHWEIZER RR, SCHWEIZER HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux[J]. American Journal of Infection Control, 2003, 31(2):124-127.
    [5] PENTERMAN J, SINGH PK, WALKER GC. Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2014, 196(18):3351-3359.
    [6] CIRZ RT, O'NEILL BM, HAMMOND JA, HEAD SR, ROMESBERG FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin[J]. Journal of Bacteriology, 2006, 188(20):7101-7110.
    [7] MICHEL-BRIAND Y, BAYSSE C. The pyocins of Pseudomonas aeruginosa[J]. Biochimie, 2002, 84(5/6):499-510.
    [8] ELFARASH A, DINGEMANS J, YE LM, HASSAN AA, CRAGGS M, REIMMANN C, THOMAS MS, CORNELIS P. Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa[J]. Microbiology:Reading, England, 2014, 160(Pt 2):261-269.
    [9] FRANK SA. Spatial polymorphism of bacteriocins and other allelopathic traits[J]. Evolutionary Ecology, 1994, 8(4):369-386.
    [10] LONG YQ, FU WX, WANG S, DENG X, JIN YX, BAI F, CHENG ZH, WU WH. Fis contributes to resistance of Pseudomonas aeruginosa to ciprofloxacin by regulating pyocin synthesis[J]. Journal of Bacteriology, 2020, 202(11):e00064-e00020.
    [11] GOVAN JR. In vivo significance of bacteriocins and bacteriocin receptors[J]. Scandinavian Journal of Infectious Diseases Supplementum, 1986, 49:31-37.
    [12] BROWN MRW, ANWAR H, LAMBERT PA. Evidence that mucoid Pseudomonas aeruginosa in the cystic fibrosis lung grows under iron-restricted conditions[J]. FEMS Microbiology Letters, 1984, 21(1):113-117.
    [13] AL-DAHMOSHI HO, AL-KHAFAJI NS, AL-JEBOURI LA, ALWAN ZH, AL-ALLAK MH, ARIDHEE, ASA. Type III secretion systems among clinical Pseudomonas aeruginosa[J]. Drug Invention Today, 2019, 11(11):2904-2908.
    [14] OLUYOMBO O, PENFOLD CN, DIGGLE SP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins[J]. mBio, 2019, 10(1):e01828-e01818.
    [15] DENAYER S, MATTHIJS S, CORNELIS P. Pyocin S2(Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor[J]. Journal of Bacteriology, 2007, 189(21):7663-7668.
    [16] JIN ZY, LI JH, NI L, ZHANG RR, XIA AG, JIN F. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion[J]. Nature Communications, 2018, 9:1383.
    [17] GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5):343-345.
    [18] HAN JD, XIA AG, HUANG YJ, NI L, CHEN WH, JIN ZY, YANG S, JIN F. Simultaneous visualization of multiple gene expression in single cells using an engineered multicolor reporter toolbox and approach of spectral crosstalk correction[J]. ACS Synthetic Biology, 2019, 8(11):2536-2546.
    [19] PU L, YANG S, XIA AG, JIN F. Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosa on surfaces[J]. ACS Synthetic Biology, 2018, 7(1):200-208.
    [20] YANG S, CHENG XY, JIN ZY, XIA AG, NI L, ZHANG RR, JIN F. Differential production of psl in planktonic cells leads to two distinctive attachment phenotypes in Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2018, 84(14):e00700-e00718.
    [21] CHEN W, ZHANG J, LI F, WANG C, ZHANG Y, XIA A, NI L, JIN F. Genome-wide analysis of gene expression noise brought about by transcriptional regulation in Pseudomonas aeruginosa[J]. Msystems, 2022:e00963-22.
    [22] BRAZAS MD, HANCOCK RE. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2005, 49(8):3222-3227.
    [23] ELFARASH A, WEI Q, CORNELIS P. The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor[J]. MicrobiologyOpen, 2012, 1(3):268-275.
    [24] BEHRENS H M. How the protein antibiotic pyocin S5 kills Pseudomonas aeruginosa[D]. Oxford, South East England. UK University of Oxford, 2019.
    [25] CORNELIS P, MATTHIJS S, van OEFFELEN L. Iron uptake regulation in Pseudomonas aeruginosa[J]. BioMetals, 2009, 22(1):15-22.
    [26] VISCA P, IMPERI F, LAMONT IL. Pyoverdine siderophores:from biogenesis to biosignificance[J]. Trends in Microbiology, 2007, 15(1):22-30.
    [27] WHITE P, JOSHI A, RASSAM P, HOUSDEN NG, KAMINSKA R, GOULT JD, REDFIELD C, MCCAUGHEY LC, WALKER D, MOHAMMED S, KLEANTHOUS C. Exploitation of an iron transporter for bacterial protein antibiotic import[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):12051-12056.
    [28] MICHEL B. After 30 years of study, the bacterial SOS response still surprises us[J]. PLoS Biology, 2005, 3(7):e255.
    [29] PARRET AHA, de MOT R. Bacteria killing their own kind:novel bacteriocins of Pseudomonas and other γ-Proteobacteria[J]. Trends in Microbiology, 2002, 10(3):107-112.
    [30] CORNELIS P, TAHRIOUI A, LESOUHAITIER O, BOUFFARTIGUES E, FEUILLOLEY M, BAYSSE C, CHEVALIER S. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI[J]. BioMetals, 2022:1-7.
    [31] LAMONT IL, BEARE PA, OCHSNER U, VASIL AI, VASIL ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(10):7072-7077.
    [32] EDGAR RJ, XU X, SHIRLEY M, KONINGS AF, MARTIN LW, ACKERLEY DF, LAMONT IL. Interactions between an anti-sigma protein and two sigma factors that regulate the pyoverdine signaling pathway in Pseudomonas aeruginosa[J]. BMC Microbiology, 2014, 14:287.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈文辉,金帆. 铜绿假单胞菌中S型绿脓杆菌素与荧光嗜铁素的功能协同性分析[J]. 生物工程学报, 2023, 39(4): 1562-1577

复制
分享
文章指标
  • 点击次数:360
  • 下载次数: 1172
  • HTML阅读次数: 995
  • 引用次数: 0
历史
  • 收稿日期:2022-08-02
  • 录用日期:2022-11-30
  • 在线发布日期: 2023-04-14
  • 出版日期: 2023-04-25
文章二维码
您是第6455203位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司