fliL基因显著影响艰难拟梭菌运动功能及产孢能力
作者:
基金项目:

国家自然科学基金(32170134,32160015,U1812403);贵州省自然科学基金([2020]1Z067,[2019]1441);贵州医科大学优秀青年人才计划([2022]101)


The fliL gene significantly affects the motility and sporulation abilities of Clostridioides difficile
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    鞭毛基底体相关FliL家族蛋白(flagellar basal body-associated FliL family protein, fliL)基因编码FliL蛋白,FliL是一种与鞭毛基体相结合的单跨膜蛋白。为研究艰难拟梭菌fliL基因功能,使用非等长同源臂偶联等位交换(allele-coupled exchange, ACE)方法成功构建了fliL基因缺失(ΔfliL)和回补(::fliL)突变株,研究突变菌株与野生型菌株(CD630)生长曲线、抗生素敏感性、pH耐受性、运动能力及产孢能力等表型的差异。结果显示,菌株ΔfliL生长速率及最大生物量均小于菌株CD630,::fliL回补菌株生长情况回复至野生型。与CD630菌株相比,ΔfliL对阿莫西林、氨苄青霉素、诺氟沙星的敏感性提高,对卡那霉素、四环素敏感性降低,::fliL抗生素敏感性部分回复至野生型水平。与CD630菌株相比,ΔfliL游泳运动能力显著降低,::fliL运动能力超越野生型菌株CD630。相比菌株CD630,菌株ΔfliL在pH值为5时耐受能力显著提高,在pH值为9时,耐受能力显著降低。除此之外,ΔfliL产孢能力较CD630显著降低,::fliL产孢能力部分恢复。以上结果表明,艰难拟梭菌fliL基因与其运动能力、抗生素敏感性、环境耐受能力和产孢能力密切相关,可能进一步影响艰难拟梭菌菌株的致病力。

    Abstract:

    Flagella are the main motility structure of Clostridioides difficile that affects the adhesion, colonization, and virulence of C. difficile in the human gastrointestinal tract. The FliL protein is a single transmembrane protein bound to the flagellar matrix. This study aimed to investigate the effect of the FliL encoding gene flagellar basal body-associated FliL family protein (fliL) on the phenotype of C. difficile. The fliL gene deletion mutant (ΔfliL) and its corresponding complementary strains (::fliL) were constructed using allele-coupled exchange (ACE) and the standard molecular clone method. The differences in physiological properties such as growth profile, antibiotic sensitivity, pH resistance, motility, and spore production ability between the mutant and wild-type strains (CD630) were investigated. The ΔfliL mutant and the::fliL complementary strain were successfully constructed. After comparing the phenotypes of strains CD630, ΔfliL, and::fliL, the results showed that the growth rate and maximum biomass of ΔfliL mutant decreased than that of CD630. The ΔfliL mutant showed increased sensitivity to amoxicillin, ampicillin, and norfloxacin. Its sensitivity to kanamycin and tetracycline antibiotics decreased, and the antibiotic sensitivity partially returned to the level of CD630 strain in the::fliL strain. Moreover, the motility was significantly reduced in the ΔfliL mutant. Interestingly, the motility of the::fliL strain significantly increased even when compared to that of the CD630 strain. Furthermore, the pH tolerance of the ΔfliL mutant significantly increased or decreased at pH 5 or 9, respectively. Finally, the sporulation ability of ΔfliL mutant reduced considerably compared to the CD630 strain and recovered in the::fliL strain. We conclude that the deletion of the fliL gene significantly reduced the swimming motility of C. difficile, suggesting that the fliL gene is essential for the motility of C. difficile. The fliL gene deletion significantly reduced spore production, cell growth rate, tolerance to different antibiotics, acidity, and alkalinity environments of C. difficile. These physiological characteristics are closely related to the survival advantage in the host intestine, which is correlated with its pathogenicity. Thus, we suggested that the function of the fliL gene is closely related to its motility, colonization, environmental tolerance, and spore production ability, which consequently affects the pathogenicity of C. difficile.

    参考文献
    [1] 吴媛, 李文革, 贾筱溪, 王媛媛, 张文竹. 我国艰难梭菌流行特征和研究进展[J]. 疾病监测, 2021, 36(4):319-323. WU Y, LI WG, JIA XX, WANG YY, ZHANG WZ. Epidemiological characteristics and research progress of Clostridioides difficile in China[J]. Disease Surveillance, 2021, 36(4):319-323(in Chinese).
    [2] HE M, MIYAJIMA F, ROBERTS P, ELLISON L, PICKARD DJ, MARTIN MJ, CONNOR TR, HARRIS SR, FAIRLEY D, BAMFORD KB, D'ARC S, BRAZIER J, BROWN D, COIA JE, DOUCE G, GERDING D, KIM HJ, KOH TH, KATO H, SENOH M, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile[J]. Nature Genetics, 2013, 45(1):109-113.
    [3] CZEPIEL J, DRÓŻDŻ M, PITUCH H, KUIJPER EJ, PERUCKI W, MIELIMONKA A, GOLDMAN S, WULTAŃSKA D, GARLICKI A, BIESIADA G. Clostridium difficile infection:review[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38(7):1211-1221.
    [4] OFORI E, RAMAI D, DHAWAN M, MUSTAFA F, GASPERINO J, REDDY M. Community-acquired Clostridium difficile:epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies[J]. Journal of Hospital Infection, 2018, 99(4):436-442.
    [5] SANTIVERI M, ROA-EGUIARA A, KÜHNE C, WADHWA N, HU H, BERG HC, ERHARDT M, TAYLOR NMI. Structure and function of Stator units of the bacterial flagellar motor[J]. Cell, 2020, 183(1):244-257.e16.
    [6] TAKEKAWA N, ISUMI M, TERASHIMA H, ZHU SW, NISHINO Y, SAKUMA M, KOJIMA S, HOMMA M, IMADA K. Structure of Vibrio FliL, a new stomatin-like protein that assists the bacterial flagellar motor function[J]. mBio, 2019, 10(2):e00292-e00219.
    [7] MOTALEB MA, PITZER JE, SULTAN SZ, LIU J. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant[J]. Journal of Bacteriology, 2011, 193(13):3324-3331.
    [8] JENAL U, WHITE J, SHAPIRO L. Caulobacter flagellar function, but not assembly, requires FliL, a non-polarly localized membrane protein present in all cell types[J]. Journal of Molecular Biology, 1994, 243(2):227-244.
    [9] SUASTE-OLMOS F, DOMENZAIN C, MIRELES- RODRÍGUEZ JC, POGGIO S, OSORIO A, DREYFUS G, CAMARENA L. The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides[J]. Journal of Bacteriology, 2010, 192(23):6230-6239.
    [10] ATTMANNSPACHER U, SCHARF BE, HARSHEY RM. FliL is essential for swarming:motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica[J]. Molecular Microbiology, 2008, 68(2):328-341.
    [11] CHAWLA R, FORD KM, LELE PP. Torque, but not FliL, regulates mechanosensitive flagellar motor-function[J]. Scientific Reports, 2017, 7:5565.
    [12] MINTON NP, EHSAAN M, HUMPHREYS CM, LITTLE GT, BAKER J, HENSTRA AM, LIEW F, KELLY ML, SHENG L, SCHWARZ K, ZHANG Y. A roadmap for gene system development in Clostridium[J]. Anaerobe, 2016, 41:104-112.
    [13] MCALLISTER KN, BOUILLAUT L, KAHN JN, SELF WT, SORG JA. Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis[J]. Scientific Reports, 2017, 7(1):14672.
    [14] ZHOU QS, RAO FQ, CHEN ZH, CHENG YM, ZHANG QF, ZHANG J, GUAN ZZ, HE Y, YU WF, CUI GZ, QI XL, HONG W. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile[J]. Microbiology Spectrum, 2022, 10(2):e0270421.
    [15] PURDY D, O'KEEFFE TAT, ELMORE M, HERBERT M, McLEOD A, BOKORI-BROWN M, OSTROWSKI A, MINTON NP. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier[J]. Molecular Microbiology, 2002, 46(2):439-452.
    [16] HEAP JT, EHSAAN M, COOKSLEY CM, NG YK, CARTMAN ST, WINZER K, MINTON NP. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker[J]. Nucleic Acids Research, 2012, 40(8):e59.
    [17] NG YK, EHSAAN M, PHILIP S, COLLERY MM, JANOIR C, COLLIGNON A, CARTMAN ST, MINTON NP. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome:allelic exchange using pyrE alleles[J]. PLoS One, 2013, 8(2):e56051.
    [18] YANG YY, SUN QQ, LIU Y, YIN HZ, YANG WP, WANG Y, LIU Y, LI YX, PANG S, LIU WX, ZHANG Q, YUAN F, QIU SW, LI J, WANG XF, FAN KQ, WANG WS, LI ZL, YIN SL. Development of a pyrF-based counterselectable system for targeted gene deletion in Streptomyces rimosus[J]. Journal of Zhejiang University-SCIENCE B, 2021, 22(5):383-396.
    [19] EHSAAN M, KUEHNE SA, MINTON NP. Clostridium difficile genome editing using pyrE alleles[A]//Methods in Molecular Biology[M]. New York, NY:Springer New York, 2016:35-52.
    [20] 饶凤琴, 程玉梅, 吴昌学, 王义, 崔古贞, 齐晓岚, 洪伟. 敲除PaLoc毒力岛的无毒性艰难梭菌菌株的构建[J]. 贵州医科大学学报, 2019, 44(10):1128-1133. RAO FQ, CHENG YM, WU CX, WANG Y, CUI GZ, QI XL, HONG W. Knockout of PaLoc toxicity loci to construct non-toxic C. difficile strain[J]. Journal of Guizhou Medical University, 2019, 44(10):1128-1133(in Chinese).
    [21] LEE YY, BELAS R. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming[J]. Journal of Bacteriology, 2015, 197(1):159-173.
    [22] FLETCHER JR, PIKE CM, PARSONS RJ, RIVERA AJ, FOLEY MH, McLAREN MR, MONTGOMERY SA, THERIOT CM. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota[J]. Nature Communications, 2021, 12:462.
    [23] AUBRY A, HUSSACK G, CHEN WX, KUOLEE R, TWINE SM, FULTON KM, FOOTE S, CARRILLO CD, TANHA J, LOGAN SM. Modulation of toxin production by the flagellar regulon in Clostridium difficile[J]. Infection and Immunity, 2012, 80(10):3521-3532.
    [24] TOTH M, STEWART NK, SMITH C, VAKULENKO SB. Intrinsic class D β-lactamases of Clostridium difficile[J]. mBio, 2018, 9(6):e01803-e01818.
    [25] OH H, EDLUND C. Mechanism of quinolone resistance in anaerobic bacteria[J]. Clinical Microbiology and Infection, 2003, 9(6):512-517.
    [26] 高琼, 黄海辉. 艰难梭菌耐药性及耐药机制研究进展[J]. 遗传, 2015, 37(5):458-464. GAO Q, HUANG HH. Update on antimicrobial resistance in Clostridium difficile[J]. Hereditas, 2015, 37(5):458-464(in Chinese).
    [27] JANA S, DEB JK. Molecular understanding of aminoglycoside action and resistance[J]. Applied Microbiology and Biotechnology, 2006, 70(2):140-150.
    [28] WETZEL D, McBRIDE SM. The impact of pH on Clostridioides difficile sporulation and physiology[J]. Applied and Environmental Microbiology, 2020, 86(4):e02706-e02719.
    [29] BABAN ST, KUEHNE SA, BARKETI-KLAI A, CARTMAN ST, KELLY ML, HARDIE KR, KANSAU I, COLLIGNON A, MINTON NP. The role of flagella in Clostridium difficile pathogenesis:comparison between a non-epidemic and an epidemic strain[J]. PLoS One, 2013, 8(9):e73026.
    [30] TRZILOVA D, WARREN MAH, GADDA NC, WILLIAMS CL, TAMAYO R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection[J]. Gut Microbes, 2022, 14(1):2038854.
    [31] 李林俐, 朱来旭, 张雪, 费荣梅. 扬子鳄源普通变形杆菌FliL基因缺失株的构建及其特性分析[J]. 南京农业大学学报, 2022, 45(4):729-735. LI LL, ZHU LX, ZHANG X, FEI RM. Construction and characterization of Proteus vulgaris FliL gene deletion strain from Alligator sinensis[J]. Journal of Nanjing Agricultural University, 2022, 45(4):729-735(in Chinese).
    [32] HASHIGUCHI Y, TEZUKA T, OHNISHI Y. Involvement of three FliA-family sigma factors in the sporangium formation, spore dormancy and sporangium dehiscence in Actinoplanes missouriensis[J]. Molecular Microbiology, 2020, 113(6):1170-1188.
    [33] CHIU CW, TSAI PJ, LEE CC, KO WC, HUNG YP. Inhibition of spores to prevent the recurrence of Clostridioides difficile infection-a possibility or an improbability?[J]. Journal of Microbiology, Immunology and Infection, 2021, 54(6):1011-1017.
    [34] ALI S, MOORE G, WILSON APR. Spread and persistence of Clostridium difficile spores during and after cleaning with sporicidal disinfectants[J]. The Journal of Hospital Infection, 2011, 79(1):97-98.
    [35] PETTIT LJ, BROWNE HP, YU L, SMITS WK, FAGAN RP, BARQUIST L, MARTIN MJ, GOULDING D, DUNCAN SH, FLINT HJ, DOUGAN G, CHOUDHARY JS, LAWLEY TD. Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism[J]. BMC Genomics, 2014, 15:160.
    [36] SAUJET L, MONOT M, DUPUY B, SOUTOURINA O, MARTIN-VERSTRAETE I. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile[J]. Journal of Bacteriology, 2011, 193(13):3186-3196.
    [37] PARTRIDGE JD, NIETO V, HARSHEY RM. A new player at the flagellar motor:FliL controls both motor output and bias[J]. mBio, 2015, 6(2):e02367.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲍江舰,杨君仪,邵瑞瑞,张婷,廖健,程玉梅,官志忠,齐晓岚,陈峥宏,洪伟,崔古贞. fliL基因显著影响艰难拟梭菌运动功能及产孢能力[J]. 生物工程学报, 2023, 39(4): 1578-1595

复制
分享
文章指标
  • 点击次数:290
  • 下载次数: 1052
  • HTML阅读次数: 754
  • 引用次数: 0
历史
  • 收稿日期:2022-09-24
  • 录用日期:2022-12-06
  • 在线发布日期: 2023-04-14
  • 出版日期: 2023-04-25
文章二维码
您是第6509998位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司