稳定高效合成多巴胺的骨髓间充质干细胞系的创建和鉴定
作者:
基金项目:

国家自然科学基金(81771381);安徽省高校自然科学基金项目(KJ2021ZD0085,KJ2021A0774,KJ2021A0784);安徽省重点研发计划(2022e07020030,2022e07020032);蚌埠医学院研究生科研创新计划项目(Byycx21050);国家级大学生创新创业训练项目资助(202110367043,202110367044,20210367058);蚌埠医学院厅重点科研平台开放课题(AHTT2022B001)


Establishment and characterization of bone marrow mesenchymal stem cell lines stably synthesizing high-level dopamine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    创建能稳定合成多巴胺(dopamine, DA)递质的三转基因(tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1)的骨髓间充质干细胞系(bone marrow mesenchymal stem cells, BMSCs),移植至帕金森大鼠模型脑内,为帕金森病(Parkinson’s disease, PD)的临床治疗提供实验依据。通过三转基因的重组慢病毒创建能稳定合成并分泌DA递质的DA-BMSCs稳定转染细胞系,利用反转录聚合酶链式反应(reverse transcription-polymerase chain reaction, RT-PCR)、蛋白免疫印迹(Western blotting)、免疫荧光等技术检测BMSCs中三转基因(TH/DDC/GCH1)的表达,采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)和高效液相色谱法(high performance liquid chromatography, HPLC)检测DA的合成情况。染色体G-带法检测DA-BMSCs的遗传稳定性。将DA-BMSCs移植于6-羟基多巴胺(6-hydroxydopamine, 6-OHDA)偏侧损毁帕金森大鼠模型右脑的前脑内侧束(medial forebrain bundle, MFB)区,检测其在PD大鼠脑内微环境中的存活、分化情况。阿扑吗啡(apomorphine, APO)诱导旋转实验检测DA-BMSCs移植后PD大鼠的运动障碍改善情况。DA-BMSCs细胞系中TH/DDC/GCH1三转基因均能够稳定高效表达,而正常BMSCs对照组中均不表达。三转基因感染组(DA-BMSCs)和LV-TH感染组细胞培养上清液中DA浓度极其显著高于BMSCs空白对照组(P<0.000 1)。传代后的DA-BMSCs仍能稳定合成DA,并保持正常二倍体核型(94.5%)。DA-BMSCs移植PD大鼠脑内4周后,显著改善PD大鼠模型的运动障碍,在脑内微环境中大量存活,分化为TH+和GFAP+细胞,并显著上调脑移植区域的DA水平。本研究成功创建了能稳定分泌DA,在大鼠脑中大量存活并分化的三转基因DA-BMSCs细胞系,为DA-BMSCs工程化培养与移植治疗PD奠定基础。

    Abstract:

    A triple-transgenic (tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1) bone marrow mesenchymal stem cell line (BMSCs) capable of stably synthesizing dopamine (DA) transmitters were established to provide experimental evidence for the clinical treatment of Parkinson's disease (PD) by using this cell line. The DA-BMSCs cell line that could stably synthesize and secrete DA transmitters was established by using the triple transgenic recombinant lentivirus. The triple transgenes (TH/DDC/GCH1) expression in DA-BMSCs was detected using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Moreover, the secretion of DA was tested by enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). Chromosome G-banding analysis was used to detect the genetic stability of DA-BMSCs. Subsequently, the DA-BMSCs were stereotactically transplanted into the right medial forebrain bundle (MFB) of Parkinson's rat models to detect their survival and differentiation in the intracerebral microenvironment of PD rats. Apomorphine (APO)-induced rotation test was used to detect the improvement of motor dysfunction in PD rat models with cell transplantation. The TH, DDC and GCH1 were expressed stably and efficiently in the DA-BMSCs cell line, but not expressed in the normal rat BMSCs. The concentration of DA in the cell culture supernatant of the triple transgenic group (DA-BMSCs) and the LV-TH group was extremely significantly higher than that of the standard BMSCs control group (P<0.000 1). After passage, DA-BMSCs stably produced DA. Karyotype G-banding analysis showed that the vast majority of DA-BMSCs maintained normal diploid karyotypes (94.5%). Moreover, after 4 weeks of transplantation into the brain of PD rats, DA-BMSCs significantly improved the movement disorder of PD rat models, survived in a large amount in the brain microenvironment, differentiated into TH-positive and GFAP-positive cells, and upregulated the DA level in the injured area of the brain. The triple-transgenic DA-BMSCs cell line that stably produced DA, survived in large numbers, and differentiated in the rat brain was successfully established, laying a foundation for the treatment of PD using engineered culture and transplantation of DA-BMSCs.

    参考文献
    [1] GIL-MARTINEZ AL, CUENCA-BERMEJO L, GONZALEZ-CUELLO AM, SANCHEZ-RODRIGO C, PARRADO A, VYAS S, FERNANDEZ-VILLALBA E, HERRERO MT. Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis[J]. Scientific Reports, 2020, 10:13147.
    [2] BJÖRKLUND A, DUNNETT SB. Dopamine neuron systems in the brain:an update[J]. Trends in Neurosciences, 2007, 30(5):194-202.
    [3] POEWE W, SEPPI K, TANNER CM, HALLIDAY GM, BRUNDIN P, VOLKMANN J, SCHRAG AE, LANG AE. Parkinson disease[J]. Nature Reviews Disease Primers, 2017, 3:17013.
    [4] BUTTERY PC, BARKER RA. Treating Parkinson's disease in the 21st century:can stem cell transplantation compete?[J]. Journal of Comparative Neurology, 2014, 522(12):2802-2816.
    [5] SUGAYA K, VAIDYA M. Stem Cell Therapies for Neurodegenerative Diseases[A]//Advances in Experimental Medicine and Biology[M]. Cham:Springer International Publishing, 2018:61-84.
    [6] NAGATSU T, NAGATSU I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD):historical overview and future prospects[J]. Journal of Neural Transmission, 2016, 123(11):1255-1278.
    [7] CARLSSON T, BJORKLUND T, KIRIK D. Restoration of the striatal dopamine synthesis for parkinson's disease:viral vector-mediated enzyme replacement strategy[J]. Current Gene Therapy, 2007, 7(2):109-120.
    [8] ZHU YZ, ZHANG J, ZENG YJ. Overview of tyrosine hydroxylase in parkinson's disease[J]. CNS & Neurological Disorders-Drug Targets, 2012, 11(4):350-358.
    [9] CEDERFJÄLL E, SAHIN G, KIRIK D, BJÖRKLUND T. Design of a single AAV vector for coexpression of TH and GCH1 to establish continuous DOPA synthesis in a rat model of parkinson's disease[J]. Molecular Therapy, 2012, 20(7):1315-1326.
    [10] ROSENBLAD C, LI Q, PIOLI EY, DOVERO S, ANTUNES AS, AGÚNDEZ L, BARDELLI M, LINDEN RM, HENCKAERTS E, BJÖRKLUND A, BEZARD E, BJÖRKLUND T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease[J]. Brain, 2019, 142(8):2402-2416.
    [11] NUTT JG, CURTZE C, HILLER A, ANDERSON S, LARSON PS, van LAAR AD, RICHARDSON RM, THOMPSON ME, SEDKOV A, LEINONEN M, RAVINA B, BANKIEWICZ KS, CHRISTINE CW. Aromatic l-amino acid decarboxylase gene therapy enhances levodopa response in parkinson's disease[J]. Movement Disorders, 2020, 35(5):851-858.
    [12] LI XC, GUO Y, YAO YX, HUA JL, MA YH, LIU CQ, GUAN WJ. Reversine increases the plasticity of long-term cryopreserved fibroblasts to multipotent progenitor cells through activation of Oct4[J]. International Journal of Biological Sciences, 2016, 12(1):53-62.
    [13] PAXINOS G, WATSON C. The Rat Brain in Stereotaxic Coordinates[M]. 6th ed. Amsterdam, The Netherlands:Academic Press/Elsevier, 2007
    [14] TEIXEIRA FG, CARVALHO MM, PANCHALINGAM KM, RODRIGUES AJ, MENDES-PINHEIRO B, ANJO S, MANADAS B, BEHIE LA, SOUSA N, SALGADO AJ. Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of parkinson's disease[J]. Stem Cells Translational Medicine, 2017, 6(2):634-646.
    [15] ARUTYUNYAN I, ELCHANINOV A, MAKAROV A, FATKHUDINOV T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy[J]. Stem Cells International, 2016, 2016:1-17.
    [16] SAN SEBASTIAN W, RICHARDSON RM, KELLS AP, LAMARRE C, BRINGAS J, PIVIROTTO P, SALEGIO EA, DeARMOND SJ, FORSAYETH J, BANKIEWICZ KS. Safety and tolerability of magnetic resonance imaging-guided convection-enhanced delivery of AAV2-hAADC with a novel delivery platform in nonhuman primate Striatum[J]. Human Gene Therapy, 2012, 23(2):210-217.
    [17] CEDERFJÄLL E, BROOM L, KIRIK D. Controlled striatal DOPA production from a gene delivery system in a rodent model of parkinson's disease[J]. Molecular Therapy, 2015, 23(5):896-906.
    [18] LUO J, KAPLITT MG, FITZSIMONS HL, ZUZGA DS, LIU YH, OSHINSKY ML, DURING MJ. Subthalamic GAD gene therapy in a parkinson's disease rat model[J]. Science, 2002, 298(5592):425-429.
    [19] GANTNER CW, de LUZY IR, KAUHAUSEN JA, MORIARTY N, NICLIS JC, BYE CR, PENNA V, HUNT CPJ, ERMINE CM, POUTON CW, KIRIK D, THOMPSON LH, PARISH CL. Viral delivery of GDNF promotes functional integration of human stem cell grafts in parkinson's disease[J]. Cell Stem Cell, 2020, 26(4):511-526.e5.
    [20] REN ZH, WANG JY, WANG SY, ZOU CL, LI XB, GUAN YQ, CHEN ZG, ALEX ZHANG Y. Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys[J]. Scientific Reports, 2013, 3:2786.
    [21] BENSKEY MJ, SELLNOW RC, SANDOVAL IM, SORTWELL CE, LIPTON JW, MANFREDSSON FP. Silencing alpha synuclein in mature nigral neurons results in rapid neuroinflammation and subsequent toxicity[J]. Frontiers in Molecular Neuroscience, 2018, 11:36.
    [22] ROBERTS BM, DOIG NM, BRIMBLECOMBE KR, LOPES EF, SIDDORN RE, THRELFELL S, CONNOR-ROBSON N, BENGOA-VERGNIORY N, PASTERNACK N, WADE-MARTINS R, MAGILL PJ, CRAGG SJ. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a Parkinsonism model[J]. Nature Communications, 2020, 11:4958.
    [23] SHEN Y, MURAMATSU SI, IKEGUCHI K, FUJIMOTO KI, FAN DS, OGAWA M, MIZUKAMI H, URABE M, KUME A, NAGATSU I, URANO F, SUZUKI T, ICHINOSE H, NAGATSU T, MONAHAN J, NAKANO I, OZAWA K. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of parkinson's disease[J]. Human Gene Therapy, 2000, 11(11):1509-1519.
    [24] MITTERMEYER G, CHRISTINE CW, ROSENBLUTH KH, BAKER SL, STARR P, LARSON P, KAPLAN PL, FORSAYETH J, AMINOFF MJ, BANKIEWICZ KS. Long-term evaluation of a phase 1 study of AADC gene therapy for parkinson's disease[J]. Human Gene Therapy, 2012, 23(4):377-381.
    [25] KEO A, MAHFOUZ A, INGRASSIA AMT, MENEBOO JP, VILLENET C, MUTEZ E, COMPTDAER T, LELIEVELDT BPF, FIGEAC M, CHARTIER-HARLIN MC, van de BERG WDJ, van HILTEN JJ, REINDERS MJT. Transcriptomic signatures of brain regional vulnerability to Parkinson's disease[J]. Communications Biology, 2020, 3:101.
    [26] ZHANG LW, PENG SJ, SUN JY, YAO J, KANG J, HU YS, FANG JG. A specific fluorescent probe reveals compromised activity of methionine sulfoxide reductases in Parkinson's disease[J]. Chem Sci, 2017, 8(4):2966-2972.
    [27] WESTPHAL R, SIMMONS C, MESQUITA MB, WOOD TC, WILLIAMS SCR, VERNON AC, CASH D. Characterization of the resting-state brain network topology in the 6-hydroxydopamine rat model of Parkinson's disease[J]. PLoS One, 2017, 12(3):e0172394.
    [28] PANDY V, NARASINGAM M, MOHAMED Z. Antipsychotic-like activity of noni (Morinda citrifolia linn.) in mice[J]. BMC Complementary and Alternative Medicine, 2012, 12(1):1-9.
    [29] ANTIPOVA VA, HOLZMANN C, SCHMITT O, WREE A, HAWLITSCHKA A. Botulinum neurotoxin A injected ipsilaterally or contralaterally into the Striatum in the rat 6-OHDA model of unilateral Parkinson's disease differently affects behavior[J]. Frontiers in Behavioral Neuroscience, 2017, 11:119.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘阳,常俊彦,王悦,杨盼,马彩云,刘高峰,郭俣,刘长青,王春景. 稳定高效合成多巴胺的骨髓间充质干细胞系的创建和鉴定[J]. 生物工程学报, 2023, 39(4): 1773-1788

复制
分享
文章指标
  • 点击次数:268
  • 下载次数: 907
  • HTML阅读次数: 915
  • 引用次数: 0
历史
  • 收稿日期:2022-09-07
  • 录用日期:2022-12-14
  • 在线发布日期: 2023-04-14
  • 出版日期: 2023-04-25
文章二维码
您是第6508596位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司