基于猪圆环病毒2型复制子的复制型表达载体的构建
作者:

Construction of a replicative expression vector based on the porcine circovirus 2 replicon
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    DNA疫苗在动物体内表达抗原基因的水平是决定DNA疫苗免疫效果的关键,而提高DNA疫苗抗原基因表达水平的途径之一是利用可在动物细胞内复制的质粒作为载体。本研究利用pcDNA3.1构建了1个基于猪圆环病毒2(porcine circovirus 2,PCV2)复制子的复制型DNA疫苗载体pCMVori,再将增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)基因分别克隆入pCMVori和对照质粒pcDNA3.1中,然后分别转染PK-15细胞,48 h后观察两组转染细胞EGFP表达情况后分别提取细胞质粒和RNA。利用Bcl I酶切前、后的质粒为模板通过定量PCR检测质粒的复制效率,并通过反转录聚合酶链式反应(reverse transcription polymerase chain reaction,RT-PCR)检测PCV2复制子的Rep基因转录产物。通过Image J软件分析两组转染细胞的平均荧光强度,并通过定量RT-PCR定量检测两组转染细胞的EGFP基因转录水平。结果显示,pCMVori在细胞内48 h的复制效率达到136%,RT-PCR结果证实Rep和Rep’均有转录。pCMVori-EGFP转染细胞的平均荧光强度比pcDNA3.1-EGFP的高39.14%,定量RT-PCR检测结果显示,前者的EGFP转录水平也比后者高40%。本研究结果表明,所构建的复制型DNA疫苗载体pCMVori可在真核细胞中独立复制,克隆的目的基因的表达水平也因此获得提升,为构建复制型DNA疫苗奠定了基础。

    Abstract:

    The antigen gene expression level of a DNA vaccine is the key factor influencing the efficacy of the DNA vaccine. Accordingly, one of the ways to improve the antigen gene expression level of a DNA vaccine is to utilize a plasmid vector that is replicable in eukaryotic cells. A replicative DNA vaccine vector pCMVori was constructed based on the non-replicative pcDNA3.1 and the replicon of porcine circovirus 2 (PCV2) in this study. An EGFP gene was cloned into pCMVori and the control plasmid pcDNA3.1. The two recombinant vectors were transfected into PK-15 cell, and the plasmid DNA and RNA were extracted from the transfected cells. Real-time PCR was used to determine the plasmid replication efficiency of the two plasmids using plasmid before and after Bcl I digestion as templates, and the transcription level of the Rep gene in PCV2 replicon was detected by RT-PCR. The average fluorescence intensity of cells transfected with the two plasmids was analyzed with software Image J, and the transcription level of EGFP was determined by means of real-time RT-PCR. The results showed that the replication efficiency of pCMVori in PK-15 cells incubated for 48 h was 136%, and the transcriptions of Rep and Rep' were verified by RT-PCR. The average fluorescence intensity of the cells transfected with pCMVori-EGFP was 39.14% higher than that of pcDNA3.1-EGFP, and the transcription level of EGFP in the former was also 40% higher than that in the latter. In conclusion, the DNA vaccine vector pCMVori constructed in this study can independently replicate in eukaryotic cells. As a result, the expression level of cloned target gene was elevated, providing a basis for developing the pCMVori-based DNA vaccine.

    参考文献
    [1] ULMER JB, DONNELLY JJ, PARKER SE, RHODES GH, FELGNER PL, DWARKI VJ, GROMKOWSKI SH, DECK RR, DeWITT CM, FRIEDMAN A, HAWE LA, LEANDER KR, MARTINEZ D, PERRY HC, SHIVER JW, MONTGOMERY DL, LIU MA. Heterologous protection against influenza by injection of DNA encoding a viral protein[J]. Science, 1993, 259(5102):1745-1749.
    [2] HOBERNIK D, BROS M. DNA vaccines-how far from clinical use?[J]. International Journal of Molecular Sciences, 2018, 19(11):3605.
    [3] LI L, PETROVSKY N. Molecular mechanisms for enhanced DNA vaccine immunogenicity[J]. Expert Review of Vaccines, 2016, 15(3):313-329.
    [4] ALLAN GM, ELLIS JA. Porcine circoviruses:a review[J]. Journal of Veterinary Diagnostic Investigation, 2000, 12(1):3-14.
    [5] MAHÉ D, BLANCHARD P, TRUONG C, ARNAULD C, LE CANN P, CARIOLET R, MADEC F, ALBINA E, JESTIN A. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes[J]. Microbiology, 2000, 81(7):1815-1824.
    [6] FAUREZ F, DORY D, GRASLAND B, JESTIN A. Replication of porcine circoviruses[J]. Virology Journal, 2009, 6:60-60.
    [7] FRANCIS MJ. Recent advances in vaccine technologies[J]. Veterinary Clinics of North America:Small Animal Practice, 2018, 48(2):231-241.
    [8] LU S, WANG SX, GRIMES-SERRANO JM. Current progress of DNA vaccine studies in humans[J]. Expert Review of Vaccines, 2008, 7(2):175-191.
    [9] TIPTIRI-KOURPETI A, SPYRIDOPOULOU K, PAPPA A, CHLICHLIA K. DNA vaccines to attack cancer:strategies for improving immunogenicity and efficacy[J]. Pharmacology & Therapeutics, 2016, 165:32-49.
    [10] LUNDSTROM K. Alphavirus-based vaccines[J]. Viruses, 2014, 6(6):2392-2415.
    [11] LUNDSTROM K. Plasmid DNA-based alphavirus vaccines[J]. Vaccines, 2019, 7(1):29.
    [12] KIM TW, HUNG CF, JUANG J, HE L, HARDWICK JM, WU TC. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death[J]. Gene Therapy, 2004, 11(3):336-342.
    [13] ZHOU X, BERGLUND P, RHODES G, PARKER SE, JONDAL M, LILJESTRÖM P. Self-replicating Semliki Forest virus RNA as recombinant vaccine[J]. Vaccine, 1994, 12(16):1510-1514.
    [14] JOHANNING FW, CONRY RM, LoBUGLIO AF, WRIGHT M, SUMEREL LA, PIKE MJ, CURIEL DT. A sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo[J]. Nucleic Acids Research, 1995, 23(9):1495-1501.
    [15] PUSHKO P, PARKER M, LUDWIG GV, DAVIS NL, JOHNSTON RE, SMITH JF. Replicon-helper systems from attenuated venezuelan equine encephalitis virus:expression of heterologous genesin vitroand immunization against heterologous pathogens in vivo[J]. Virology, 1997, 239(2):389-401.
    [16] KALLEL H, KAMEN AA. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials[J]. Biotechnology Journal, 2015, 10(5):741-747.
    [17] WATANABE M, NISHIKAWAJI Y, KAWAKAMI H, KOSAI KI. Adenovirus biology, recombinant adenovirus, and adenovirus usage in gene therapy[J]. Viruses, 2021, 13(12):2502.
    [18] WOLD W, TOTH K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy[J]. Current Gene Therapy, 2014, 13(6):421-433.
    [19] LIU XS, ZHAO DH, ZHOU P, ZHANG YG, WANG YL. Evaluation of the efficacy of a recombinant adenovirus expressing the spike protein of porcine epidemic diarrhea virus in pigs[J]. BioMed Research International, 2019, 2019:1-8.
    [20] SAHA B, PARKS RJ. Human adenovirus type 5 vectors deleted of early region 1(E1) undergo limited expression of early replicative E2 proteins and DNA replication in non-permissive cells[J]. PLoS One, 2017, 12(7):e0181012.
    [21] ROJAS JM, MORENO H, GARCÍA A, RAMÍREZ JC, SEVILLA N, MARTÍN V. Two replication-defective adenoviral vaccine vectors for the induction of immune responses to PPRV[J]. Vaccine, 2014, 32(3):393-400.
    [22] ZHOU XY, XIANG ZQ, ERTL HCJ. Vaccine design:replication-defective adenovirus vectors[M]//Vaccine Design. New York, NY:Springer New York, 2016:329-349.
    [23] FAUREZ F, DORY D, HENRY A, BOUGEARD S, JESTIN A. Replication efficiency of rolling-circle replicon-based plasmids derived from porcine circovirus 2 in eukaryotic cells[J]. Journal of Virological Methods, 2010, 165(1):27-35.
    [24] MANKERTZ A, MUELLER B, STEINFELDT T, SCHMITT C, FINSTERBUSCH T. New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2[J]. Journal of Virology, 2003, 77(18):9885-9893.
    [25] MANKERTZ A, HILLENBRAND B. Analysis of transcription of porcine circovirus type 1[J]. Journal of General Virology, 2002, 83(11):2743-2751.
    引证文献
引用本文

蔡晓雪,李俊,李章勋,杜红旭,曹立亭,马跃. 基于猪圆环病毒2型复制子的复制型表达载体的构建[J]. 生物工程学报, 2023, 39(7): 2634-2643

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-21
  • 录用日期:2023-02-22
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6548398位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司