甘薯蔗糖转运蛋白的功能分析
作者:
基金项目:

国家重点研发计划(2018YFD1000705,2018YFD1000700);中央高校基本科研业务费专项资金(XDJK2020B032,XDJK2021F001);重庆市技术创新与应用发展专项重点项目(cstc2021jscx-gksbX0022);西南大学种质创制专项研究项目


Functional analysis on sucrose transporters in sweet potato
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    甘薯(Ipomoea batatas)是重要的粮食和工业加工原料作物。蔗糖是植物体内碳水化合物长距离转运的主要形式,蔗糖转运蛋白(sucrose transporter,SUT)在植物的生长代谢中调控蔗糖的跨膜运输和分配,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本研究根据不同淀粉性状甘薯块根中差异表达的2个SUT基因转录本,进行cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)克隆,获得IbSUT62788IbSUT81616的全长cDNA序列;通过系统发育分析明确其分类;通过在本氏烟草(Nicotiana benthamiana)中瞬时表达明确其亚细胞定位;通过酵母功能互补系统鉴定IbSUT62788和IbSUT81616是否具有吸收、转运蔗糖和己糖的能力。通过实时荧光定量PCR (real-time fluorescence quantitative polymerase chain reaction,RT-qPCR)分析IbSU62788IbSUT81616在甘薯各器官中的表达特征;通过蘸花法得到外源表达IbSUT62788IbSUT81616基因的拟南芥(Arabidopsis thaliana)植株,比较与野生型拟南芥的淀粉和糖含量的差异。结果表明,IbSUT62788IbSUT81616分别编码505个和521个氨基酸的SUT蛋白,均属于SUT1亚家族。IbSUT62788和IbSUT81616均定位于细胞膜,在酵母系统中具有转运蔗糖、葡萄糖和果糖的能力。此外,IbSUT62788还具有转运甘露糖的能力。IbSUT62788在甘薯叶片、侧枝和茎中的表达量更高,IbSUT81616在侧枝、茎和块根中表达量更高。IbSUT62788IbSUT81616在拟南芥中异源表达后,植株可以正常生长,但生物量增加。IbSUT62788的异源表达增加了拟南芥植株叶片可溶性糖含量、叶片大小和种子千粒重;IbSUT81616的异源表达增加了拟南芥植株叶片、根尖的淀粉积累量和种子千粒重,但减少了可溶性糖含量。本研究结果表明,IbSUT62788IbSUT81616可能是调控甘薯蔗糖和糖含量性状的重要基因,在细胞膜上进行着蔗糖的跨膜运输、蔗糖进出库组织、韧皮部蔗糖的运输与卸载等生理功能,在拟南芥中异源表达造成的性状改变说明其在提高其他植物或作物产量中的应用潜力。本研究为揭示甘薯淀粉和糖代谢及重要品质性状形成机制提供了重要信息。

    Abstract:

    Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.

    参考文献
    [1] 张凯, 罗小敏, 王季春, 唐道彬, 吴正丹, 叶爽, 王莉. 甘薯淀粉产量及相关性状的遗传多样性和关联度分析[J]. 中国生态农业学报, 2013, 21(3):365-374. ZHANG K, LUO XM, WANG JC, TANG DB, WU ZD, YE S, WANG L. Genetic diversity and correlation analysis of starch yield-related traits in sweet potato[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3):365-374(in Chinese).
    [2] ZHOU WZ, YANG J, HONG Y, LIU GL, ZHENG JL, GU ZB, ZHANG P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato[J]. Carbohydrate Polymers, 2015, 122:417-427.
    [3] REN ZT, HE SZ, ZHAO N, ZHAI H, LIU QC. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato[J]. Plant Biotechnology Journal, 2019, 17(1):21-32.
    [4] 王璐璐. 甘薯淀粉品质的影响因素及其与块根食用品质的相关性研究[D]. 重庆:西南大学硕士学位论文, 2021. WANG LL. Study on the influencing factors of sweet potato starch quality and its correlation with the edible quality of storage roots[D]. Chongqing:Master's Thesis of Southwest University, 2021(in Chinese).
    [5] 沈升法, 项超, 吴列洪, 李兵, 罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析[J]. 中国农业科学, 2021, 54(1):34-45. SHEN SF, XIANG C, WU LH, LI B, LUO ZG. Analysis on the characteristics of soluble sugar components in sweet potato storage root and its relationship with taste[J]. Scientia Agricultura Sinica, 2021, 54(1):34-45(in Chinese).
    [6] LI Y, GU YH, QIN H, ZHANG YZ. Two pairs of sucrose transporters in Ipomoea batatas (L.) Lam are predominantly expressed in sink leaves and source leaves respectively[J]. Plant Science, 2010, 179(3):250-256.
    [7] 张清, 胡伟长, 张积森. 植物蔗糖转运蛋白研究进展[J]. 热带作物学报, 2016, 37(1):193-202. ZHANG Q, HU WC, ZHANG JS. Sucrose transporters in plants[J]. Chinese Journal of Tropical Crops, 2016, 37(1):193-202(in Chinese).
    [8] 高蕾, 肖文芳, 李文燕, 彭昌操. 拟南芥蔗糖转运蛋白(SUTs)的功能研究进展[J]. 分子植物育种, 2011, 9(2):251-255. GAO L, XIAO WF, LI WY, PENG CC. Progress on functions of sucrose transporters (SUTs) in Arabidopsis thaliana[J]. Molecular Plant Breeding, 2011, 9(2):251-255(in Chinese).
    [9] SMEEKENS S. Sugar-induced signal transduction in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51:49-81.
    [10] REINDERS A, SCHULZE W, KÜHN C, BARKER L, SCHULZ A, WARD JM, FROMMER WB. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. The Plant Cell, 2002, 14(7):1567-1577.
    [11] 涂文睿, 蔡昱萌, 颜婧, 卢江, 张雅丽. 植物蔗糖转运蛋白及其生理功能的研究进展[J]. 生物技术通报, 2017, 33(4):1-7. TU WR, CAI YM, YAN J, LU J, ZHANG YL. Research progresses on plant sucrose transporters and physiological functions[J]. Biotechnology Bulletin, 2017, 33(4):1-7(in Chinese).
    [12] 戚继艳, 阳江华, 唐朝荣. 植物蔗糖转运蛋白的基因与功能[J]. 植物学通报, 2007, 24(4):532-543. QI JY, YANG JH, TANG ZR. Sucrose transporter genes and their functions in plants[J]. Chinese Bulletin of Botany, 2007, 24(4):532-543(in Chinese).
    [13] BARKER L, KUHN C, WEISE A, SCHULZ A, GEBHARDT C, HIRNER B, HELLMANN H, SCHULZE W, WARD JM, FROMMER WB. SUT2, a putative sucrose sensor in sieve elements[J]. The Plant Cell, 2000, 12(7):1153.
    [14] 李晶晶, 王英, 高和琼, 李开绵, 庄南生. 木薯蔗糖转运蛋白(SUT)家族基因的染色体物理定位[J]. 分子植物育种, 2016, 14(4):794-802. LI JJ, WANG Y, GAO HQ, LI KM, ZHUANG NS. The chromosome physical location of the SUT family genes in cassave[J]. Molecular Plant Breeding, 2016, 14(4):794-802(in Chinese).
    [15] LEMOINE R. Sucrose transporters in plants:update on function and structure[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2000, 1465(1/2):246-262.
    [16] REINDERS A, PANSHYSHYN JA, WARD JM. Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5[J]. Journal of Biological Chemistry, 2005, 280(2):1594-1602.
    [17] RIESMEIER JW, WILLMITZER L, FROMMER WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast[J]. The EMBO Journal, 1992, 11(13):4705-4713.
    [18] BÜRKLE L, HIBBERD JM, QUICK WP, KÜHN C, HIRNER B, FROMMER WB. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves1[J]. Plant Physiology, 1998, 118(1):59-68.
    [19] 洪海强. 过表达OsSUT2和OsSUT5籼稻的灌浆生理[D]. 福州:福建农林大学硕士学位论文, 2008. HONG HQ. Physiological traits of transgenic indica rice (Oryza sativa L.) with over-expressed OsSUT2/OsSUT5 during grain filling period[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2008(in Chinese).
    [20] 张雅文, 包淑慧, 唐振家, 王小文, 杨芳, 张德春, 胡一兵. 蔗糖转运蛋白OsSUT5在水稻花粉发育及结实中的作用[J]. 中国农业科学, 2021, 54(16):3369-3385. ZHANG YW, BAO SH, TANG ZJ, WANG XW, YANG F, ZHANG DC, HU YB. Function of sucrose transporter OsSUT5 in rice pollen development and seed setting[J]. Scientia Agricultura Sinica, 2021, 54(16):3369-3385(in Chinese).
    [21] MILNE RJ, BYRT CS, PATRICK JW, GROF CPL. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes[J]. Frontiers in Plant Science, 2013, 4:223.
    [22] 王丹丹. 甘薯蔗糖转运蛋白基因的克隆及功能分析[D]. 泰安:山东农业大学硕士学位论文, 2020. WANG DD. Cloning and functional analysis of sweet potato sucrose transporter genes[D]. Taian:Master's Thesis of Shandong Agricultural University, 2020(in Chinese).
    [23] ZHANG K, WU ZD, TANG DB, LUO K, LU HX, LIU YY, DONG J, WANG X, LV CW, WANG JC, LU K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato[J]. Frontiers in Plant Science, 2017, 8:914.
    [24] CHEN L, LIU XH, HUANG XJ, LUO W, LONG YM, GREINER S, RAUSCH T, ZHAO HB. Functional characterization of a drought-responsive invertase inhibitor from maize (Zea mays L.)[J]. International Journal of Molecular Sciences, 2019, 20(17):4081.
    [25] PARK SC, KIM YH, JI CY, PARK S, JEONG JC, LEE HS, KWAK SS. Stable internal reference genes for the normalization of real-time PCR in different sweet potato cultivars subjected to abiotic stress conditions[J]. PLoS One, 2012, 7(12):e51502.
    [26] SCHMITTGEN TD, LIVAK KJ. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.
    [27] 胡梅珍. 木薯叶片蔗糖质外体装载模式[D]. 海口:海南大学博士学位论文, 2016. HU MZ. Sucrose apoplastic loading pattern in cassava leaf[D]. Haikou:Doctoral Dissertation of Hainan University, 2016(in Chinese).
    [28] VERWAAL R, PAALMAN JWG, HOGENKAMP A, VERKLEIJ AJ, VERRIPS CT, BOONSTRA J. HXT5 expression is determined by growth rates in Saccharomyces cerevisiae[J]. Yeast, 2002, 19(12):1029-1038.
    [29] WIECZORKE R, KRAMPE S, WEIERSTALL T, FREIDEL K, HOLLENBERG CP, BOLES E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae[J]. FEBS Letters, 1999, 464(3):123-128.
    [30] 高婧芳, 王邦, 韩晓云, 田朝光. 全基因组水平扫描鉴定粗糙脉孢菌糖转运蛋白及其在酿酒酵母己糖发酵中的评价[J]. 生物工程学报, 2017, 33(1):79-89. GAO JF, WANG B, HAN XY, TIAN CG. Genome-wide screening of predicted sugar transporters in Neurospora crassa and the application in hexose fermentation by Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2017, 33(1):79-89(in Chinese).
    [31] ZHANG XR, HENRIQUES R, LIN SS, NIU QW, CHUA NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2):641-646.
    [32] 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA[J]. 中国农学通报, 2010, 26(4):30-32. YAN QX, HUANG DY, LI KM, YE JQ. Genomic DNA extraction in cassava by modified CTAB method[J]. Chinese Agricultural Science Bulletin, 2010, 26(4):30-32(in Chinese).
    [33] KUNZ HH, HÄUSLER RE, FETTKE J, HERBST K, NIEWIADOMSKI P, GIERTH M, BELL K, STEUP M, FLÜGGE UI, SCHNEIDER A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis[J]. Plant Biology, 2010, 12:115-128.
    [34] PAN T, WANG YH, JING RN, WANG YF, WEI ZY, ZHANG BL, LEI CL, QI YZ, WANG F, BAO XH, YAN MY, ZHANG Y, ZHANG PC, YU MZ, WAN GX, CHEN Y, YANG WK, ZHU JP, ZHU Y, ZHU SS, et al. Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1-CCZ1[J]. Plant Physiology, 2021, 187(4):2174-2191.
    [35] YAN N. Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends in Biochemical Sciences, 2013, 38(3):151-159.
    [36] 齐素坤. 甘薯蔗糖转运蛋白家族基因的克隆与功能初探[D]. 济南:山东大学硕士学位论文, 2016. QI SK. Gene clone and function research of sucrose transporters gene family in sweet potato (Ipomoea batatas (L.) lam)[D]. Ji'nan:Master's Thesis of Shandong University, 2016(in Chinese).
    [37] CHEN LQ, QU XQ, HOU BH, SOSSO D, OSORIO S, FERNIE AR, FROMMER WB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065):207-211.
    [38] 李岩, 王海燕, 张义正. 甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位[J]. 应用与环境生物学报, 2010, 16(6):798-802. LI Y, WANG HY, ZHANG YZ. Localization of IbSUT1x protein from Ipomoea batatas (L.) lam in yeast cells[J]. Chinese Journal of Applied & Environmental Biology, 2010, 16(6):798-802(in Chinese).
    [39] KUHN C, QUICK WP, SCHULZ A, RIESMEIER JW, SONNEWALD U, FROMMER WB. Companion cell-specific inhibition of the potato sucrose transporter SUT1[J]. Plant, Cell and Environment, 1996, 19(10):1115-1123.
    [40] 庞建周. 小麦干旱胁迫应答基因TaSUT1的克隆、表达与基因转化研究[D]. 石家庄:河北师范大学硕士学位论文, 2011. PANG JZ. Cloning, expression and transformation of TaSUT1, a responsive gene in Triticum aestivum to drought stress[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2011(in Chinese).
    [41] 高志民, 杨学文, 彭镇华, 李雪平, 牟少华, 马艳军. 绿竹BoSUT2基因的分子特征与亚细胞定位[J]. 林业科学, 2010, 46(2):45-50. GAO ZM, YANG XW, PENG ZH, LI XP, MU SH, MA YJ. Molecular characterization and subcellular localization of BoSUT2 from Bambusa oldhamii[J]. Scientia Silvae Sinicae, 2010, 46(2):45-50(in Chinese).
    [42] ENDLER A, MEYER S, SCHELBERT S, SCHNEIDER T, WESCHKE W, PETERS SW, KELLER F, BAGINSKY S, MARTINOIA E, SCHMIDT UG. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach[J]. Plant Physiology, 2006, 141(1):196-207.
    [43] SIVITZ AB, REINDERS A, JOHNSON ME, KRENTZ AD, GROF CPL, PERROUX JM, WARD JM. Arabidopsis sucrose transporter AtSUC9. high-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype[J]. Plant Physiology, 2007, 143(1):188-198.
    [44] REINDERS A, SIVITZ AB, STARKER CG, STEPHEN GANTT J, WARD JM. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus[J]. Plant Molecular Biology, 2008, 68(3):289-299.
    [45] OKUBO-KURIHARA E, HIGAKI T, KURIHARA Y, KUTSUNA N, YAMAGUCHI J, HASEZAWA S. Sucrose transporter NtSUT4 from tobacco BY-2 involved in plant cell shape during miniprotoplast culture[J]. Journal of Plant Research, 2011, 124(3):395-403.
    [46] SCHNEIDER S, HULPKE S, SCHULZ A, YARON I, HÖLL J, IMLAU A, SCHMITT B, BATZ S, WOLF S, HEDRICH R, SAUER N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters[J]. Plant Biology, 2012, 14(2):325-336.
    [47] 吴转娣, 昝逢刚, 张树珍, 王俊刚, 唐建平. 蔗糖转运蛋白的调节[J]. 生物技术通报, 2009(7):12-16, 26. WU ZD, ZAN FG, ZHANG SZ, WANG JG, TANG JP. The regulation of sucrose transporters[J]. Biotechnology Bulletin, 2009(7):12-16, 26(in Chinese).
    [48] 张引鹤. 大豆蔗糖转运蛋白GmSUT4基因的克隆及抗逆性功能研究[D]. 长春:吉林农业大学硕士学位论文, 2021. ZHANG YH. Cloning and stress resistance function analysis of GmSUT4 in soybean[D]. Changchun:Master's Thesis of Jilin Agricultural University, 2021(in Chinese).
    [49] 王洁, 蔡昱萌, 张楠, 张雅丽. 植物蔗糖转运蛋白表达的调控因素与分子机制[J]. 生物技术通报, 2021, 37(3):115-124. WANG J, CAI YM, ZHANG N, ZHANG YL. Regulatory factors and molecular mechanism of sucrose transporters' expressions in plant[J]. Biotechnology Bulletin, 2021, 37(3):115-124(in Chinese).
    [50] 石永春, 王旭, 王潇然, 金维环, 田园, 于海东. 蔗糖信号调控植物生长和发育的研究进展[J]. 植物生理学报, 2019, 55(11):1579-1586. SHI YC, WANG X, WANG XR, JIN WH, TIAN Y, YU HD. The regulatory role of sucrose as a signal in plant growth and development[J]. Plant Physiology Journal, 2019, 55(11):1579-1586(in Chinese).
    [51] LEGGEWIE G, KOLBE A, LEMOINE R, ROESSNER U, LYTOVCHENKO A, ZUTHER E, KEHR J, FROMMER WB, RIESMEIER JW, WILLMITZER L, FERNIE AR. Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology[J]. Planta, 2003, 217(1):158-167.
    [52] ROSCHE E, BLACKMORE D, TEGEDER M, RICHARDSON T, SCHROEDER H, HIGGINS TJV, FROMMER WB, OFFLER CE, PATRICK JW. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons[J]. The Plant Journal, 2002, 30(2):165-175.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘怡然,吴正丹,吴维泰,杨朝彬,陈才睿,张凯. 甘薯蔗糖转运蛋白的功能分析[J]. 生物工程学报, 2023, 39(7): 2772-2793

复制
分享
文章指标
  • 点击次数:327
  • 下载次数: 1652
  • HTML阅读次数: 789
  • 引用次数: 0
历史
  • 收稿日期:2022-12-06
  • 录用日期:2023-02-14
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6585407位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司