红边龙血树叶绿体基因组特征及其系统发育分析
作者:
基金项目:

巴马县人才科技计划项目(202100180);广西研究生教育创新计划项目(YCSW2022028)


Characteristics of the chloroplast genome of Dracaena marginata and phylogenetic analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    红边龙血树(Dracaena marginata)是一种在全球广泛种植的龙血树属园艺植物,具有较高的观赏价值和药用价值。本研究首次利用高通量测序技术对红边龙血树叶片进行全基因组测序,组装得到完整的叶绿体基因组序列,并进行注释、序列特征比较和系统发育分析。结果表明,红边龙血树叶绿体基因组包含一个典型的四分体结构,长度为154 926 bp,是目前已报道的龙血树属中叶绿体基因组最小的物种;共拥有132个基因,包含86个编码蛋白基因、38个转运RNA基因和8个核糖体RNA基因;密码子偏好性分析发现存在偏好使用A/U碱基结尾的现象,整体上密码子偏好性较低;共鉴定出46个简单重复序列位点和54个长重复序列,分别在大单拷贝区与反向重复区有最大检出率;种间边界分析发现边界区域基因存在相对位置差异,扩张收缩情况总体较为相似;与近缘种进行系统发育分析,红边龙血树与细枝龙血树聚为一类,关系最近,符合形态学分类特征。对红边龙血树叶绿体基因组的解析为龙血树属植物的物种鉴定、遗传多样性和叶绿体转基因工程等提供了重要数据基础。

    Abstract:

    Dracaena marginata is a widely cultivated horticultural plant in the world, which has high ornamental and medicinal value. In this study, the whole genome of leaves from D. marginata was sequenced by Illumina HiSeq 4000 platform. The chloroplast genome were assembled for functional annotation, sequence characteristics and phylogenetic analysis. The results showed that the chloroplast genome of D. marginata composed of four regions with a size of 154 926 bp, which was the smallest chloroplast genome reported for Dracaena species to date. A total of 132 genes were identified, including 86 coding genes, 38 tRNA genes and 8 rRNA genes. Codon bias analysis found that the codon usage bias was weak and there was a bias for using A/U base endings. 46 simple sequence repeat and 54 repeats loci were detected in the chloroplast genome, with the maximum detection rate in the large single copy region and inverted repeat region, respectively. The inverted repeats boundaries of D. marginata and Dracaena were highly conserved, whereas gene location differences occurred. Phylogenetic analysis revealed that D. serrulata and D. cinnabari form a monophyletic clade, which was the closest relationship and conformed to the morphological classification characteristics. The analysis of the chloroplast genome of D. marginata provides important data basis for species identification, genetic diversity and chloroplast genome engineering of Dracaena.

    参考文献
    [1] 章玉平, 陈丽云. 七彩千年木水培技术研究[J]. 广东农业科学, 2009, 36(10):72-74. ZHANG YP, CHEN LY. Study of hydroponic culture on Dracaena marginata[J]. Guangdong Agricultural Sciences, 2009, 36(10):72-74(in Chinese).
    [2] JUPA R, PLICHTA R, PASCHOVÁ Z, NADEZHDINA N, GEBAUER R. Mechanisms underlying the long-term survival of the monocot Dracaena marginata under drought conditions[J]. Tree Physiology, 2017, 37(9):1182-1197.
    [3] HAMIDAH, PUTRI D, PURNOBASUKI H. Correlation of lead (Pb) content towards the number of stomata on the plant Dracaena marginata tricolor in some places of Surabaya City[J]. E3S Web of Conferences, 2020, 153:02002.
    [4] VANLALRUATI, JAIN R, SINGH M, ANAND P, SINDHU SS, SANGWAN S. Effect of arbuscular mycorrhizal fungal consortia on growth, quality and nutrient uptake of Dracaena (Dracaena marginata)[J]. The Indian Journal of Agricultural Sciences, 2021, 91(1):74-78.
    [5] ALJUHANI WS, ALJOHANI AY. Complete chloroplast genome of the medicinal plant Cleome paradoxa R.Br. Ex DC:comparative analysis, and phylogenetic relationships among the members of Cleomaceae[J]. Gene, 2022, 845:146851.
    [6] JI YH, LIU CK, YANG ZY, YANG LF, HE ZS, WANG HC, YANG JB, YI TS. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae)[J]. Molecular Ecology Resources, 2019, 19(5):1333-1345.
    [7] PANG XB, LIU HS, WU SR, YUAN YC, LI HJ, DONG JS, LIU ZH, AN CZ, SU ZH, LI B. Species identification of oaks (Quercus L., Fagaceae) from gene to genome[J]. International Journal of Molecular Sciences, 2019, 20(23):5940.
    [8] 热伊汉古丽·图尔迪, 慕丽红, 田新民. 扁果草叶绿体基因组特征分析[J]. 生物工程学报, 2022, 38(8):2999-3013. TURDI R, MU LH, TIAN XM. Characteristics of the chloroplast genome of Isopyrum anemonoides[J]. Chinese Journal of Biotechnology, 2022, 38(8):2999-3013(in Chinese).
    [9] 苏涛, 詹亚光, 韩梅, 郝爱平. 叶绿体基因工程:一种植物生物技术的新方法[J]. 生物工程学报, 2005, 21(4):674-680. SU T, ZHAN YG, HAN M, HAO AP. Chloroplast genetic engineering:a new approach in plant biotechnology[J]. Chinese Journal of Biotechnology, 2005, 21(4):674-680(in Chinese).
    [10] KAUSHAL C, ABDIN MZ, KUMAR S. Chloroplast genome transformation of medicinal plant Artemisia annua[J]. Plant Biotechnology Journal, 2020, 18(11):2155-2157.
    [11] 张剑锋, 李阳, 金静静, 陈千思, 谢小东, 王中, 罗朝鹏, 杨军. 烟草叶绿体基因工程研究进展[J]. 烟草科技, 2017, 50(6):88-98. ZHANG JF, LI Y, JIN JJ, CHEN QS, XIE XD, WANG Z, LUO ZP, YANG J. Recent advances in tobacco chloroplast genetic engineering[J]. Tobacco Science & Technology, 2017, 50(6):88-98(in Chinese).
    [12] ZHANG ZL, ZHANG Y, SONG MF, GUAN YH, MA XJ. Species identification of Dracaena using the complete chloroplast genome as a super-barcode[J]. Frontiers in Pharmacology, 2019, 10:1441.
    [13] CELIŃSKI K, KIJAK H, WILAND-SZYMAŃSKA J. Complete chloroplast genome sequence and phylogenetic inference of the canary islands dragon tree (Dracaena draco L.)[J]. Forests, 2020, 11(3):309.
    [14] AHMAD W, ASAF S, KHAN A, AL-HARRASI A, AL-OKAISHI A, KHAN AL. Complete chloroplast genome sequencing and comparative analysis of threatened dragon trees Dracaena serrulata and Dracaena cinnabari[J]. Scientific Reports, 2022, 12:16787.
    [15] JIN JJ, YU WB, YANG JB, SONG Y, DEPAMPHILIS CW, YI TS, LI DZ. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1):241.
    [16] SHI LC, CHEN HM, JIANG M, WANG LQ, WU X, HUANG LF, LIU C. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucleic Acids Research, 2019, 47(W1):W65-W73.
    [17] ZHENG SY, POCZAI P, HYVÖNEN J, TANG J, AMIRYOUSEFI A. Chloroplot:an online program for the versatile plotting of organelle genomes[J]. Frontiers in Genetics, 2020, 11:576124.
    [18] KURTZ S, CHOUDHURI JV, OHLEBUSCH E, SCHLEIERMACHER C, STOYE J, GIEGERICH R. REPuter:the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research, 2001, 29(22):4633-4642.
    [19] BEIER S, THIEL T, MÜNCH T, SCHOLZ U, MASCHER M. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585.
    [20] AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17):3030-3031.
    [21] BI GQ, MAO YX, XING QK, CAO M. HomBlocks:a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching[J]. Genomics, 2018, 110(1):18-22.
    [22] NAKAMURA T, YAMADA KD, TOMII K, KATOH K. Parallelization of MAFFT for large-scale multiple sequence alignments[J]. Bioinformatics, 2018, 34(14):2490-2492.
    [23] FU JM, LIU HM, HU JJ, LIANG YQ, LIANG JJ, WUYUN TN, TAN XF. Five complete chloroplast genome sequences from Diospyros:genome organization and comparative analysis[J]. PLoS One, 2016, 11(7):e0159566.
    [24] 毕彧. 百合属的比较叶绿体基因组学研究[D]. 长春:吉林农业大学硕士学位论文, 2017. BI Y. Comparative chloroplast genomics of the genus Lilium[D]. Changchun:Master's Thesis of Jilin Agricultural University, 2017(in Chinese).
    [25] 王飞, 辛雅萱, 董章宏, 赵文植, 李卫英, 马路遥, 夏茂甜, 辛培尧. 无刺龙舌兰叶绿体基因组特征及密码子偏好性分析[J]. 南方农业学报, 2022, 53(4):1030-1039. WANG F, XIN YX, DONG ZH, ZHAO WZ, LI WY, MA LY, XIA MT, XIN PY. Chloroplast genome characteristics and codon preference analysis of Yucca treculeana[J]. Journal of Southern Agriculture, 2022, 53(4):1030-1039(in Chinese).
    [26] SHEN JS, LI XQ, CHEN X, HUANG XL, JIN SH. The complete chloroplast genome of Carya cathayensis and phylogenetic analysis[J]. Genes, 2022, 13(2):369.
    [27] 童一涵, 郑倩, 杜新明, 冯士令, 周莉君, 丁春邦, 陈涛. 多齿红山茶叶绿体基因组序列特征分析[J]. 植物资源与环境学报, 2022, 31(5):27-36. TONG YH, ZHENG Q, DU XM, FENG SL, ZHOU LJ, DING CB, CHEN T. Analysis on sequence characteristics of chloroplast genome of Camellia polyodonta[J]. Journal of Plant Resources and Environment, 2022, 31(5):27-36(in Chinese).
    [28] BU YF, WU XY, SUN N, MAN Y, JING YP. Codon usage bias predicts the functional MYB10 gene in Populus[J]. Journal of Plant Physiology, 2021, 265:153491.
    [29] LU PL, MORDEN CW. Phylogenetic relationships among dracaenoid genera (Asparagaceae:Nolinoideae) inferred from chloroplast DNA loci[J]. Systematic Botany, 2014, 39(1):90-104.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王子豪,郭佳乐,范琪,田泽园,王雪晴,郑维,黄罗冬. 红边龙血树叶绿体基因组特征及其系统发育分析[J]. 生物工程学报, 2023, 39(7): 2926-2938

复制
相关视频

分享
文章指标
  • 点击次数:233
  • 下载次数: 982
  • HTML阅读次数: 933
  • 引用次数: 0
历史
  • 收稿日期:2022-11-09
  • 录用日期:2023-01-09
  • 在线发布日期: 2023-07-11
  • 出版日期: 2022-07-25
文章二维码
您是第6573117位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司