多聚磷酸盐激酶双底物通道腔的理性设计及其在无细胞催化生产谷胱甘肽中的应用
作者:
基金项目:

国家自然科学基金 (32070035);国家重点研发计划 (2018YFA0900300);中央高校基本科研专项资金(JUSRP221012);高等学校学科创新引智计划(111-2-06)


Rational design of polyphosphate kinase dual-substrate channel cavity for efficient production of glutathione by cell free catalysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    三磷酸腺苷(adenosine triphosphate,ATP)是一种重要的辅助因子,参与许多需能的生物催化反应。多聚磷酸盐激酶(polyphosphate kinases,PPK)由于其底物聚磷酸盐廉价易得,可以为消耗ATP的反应提供能量。本研究选择哈氏噬纤维菌(Cytophaga hutchinsonii)来源的ChPPK,进行了底物谱和耐受性分析,通过分子对接和定点突变,理性改造多聚磷酸盐激酶的双底物通道腔来提高PPK酶的催化活性。与野生型相比,筛选得到突变体ChPPKK81H-K103V的相对酶活提高了326.7%,同时,双突变扩大了ChPPK的底物利用范围与耐受性,提高了该酶的耐热性与耐碱性。基于该ATP再生系统,本研究偶联谷胱甘肽双功能酶GshAB和ChPPKK81H-K103V,破细胞后采用无细胞催化生产谷胱甘肽,加入5 mmol/L ATP后,该体系6 h可以生产(25.4±1.9) mmol/L的谷胱甘肽,比突变前的催化体系提高了41.9%。优化无细胞催化体系的缓冲液、裂解液菌体量、补料时间后,无细胞体系可产生(45.2±1.8) mmol/L谷胱甘肽,底物l-半胱氨酸的转化率达到90.4%。提高ChPPK生产ATP的能力,可有效增强底物的转化率,降低催化成本,实现了无细胞催化生产谷胱甘肽的高产量、高转化率与高经济价值的统一。本研究提供了一种绿色高效的ATP再生系统,可为消耗ATP的生物催化反应平台提供可持续动力。

    Abstract:

    ATP is an important cofactor involved in many biocatalytic reactions that require energy input. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We selected ChPPK from Cytophaga hutchinsonii for substrate profiling and tolerance analysis. By molecular docking and site-directed mutagenesis, we rationally engineered the dual-substrate channel cavity of polyphosphate kinase to improve the catalytic activity of PPK. Compared with the wild type, the relative enzyme activity of the screened mutant ChPPKK81H-K103V increased by 326.7%. Meanwhile, the double mutation expanded the substrate utilization range and tolerance of ChPPK, and improved its heat and alkali resistance. Subsequently, we coupled the glutathione bifunctional enzyme GshAB and ChPPKK81H-K103V based on this ATP regeneration system, and glutathione was produced by cell-free catalysis upon disruption of cells. This system produced (25.4±1.9) mmol/L glutathione in 6 h upon addition of 5 mmol/L ATP. Compared with the system before mutation, glutathione production was increased by 41.9%. After optimizing the buffer, bacterial mass and feeding time of this system, (45.2±1.8) mmol/L glutathione was produced in 6 h and the conversion rate of the substrate l-cysteine was 90.4%. Increasing the ability of ChPPK enzyme to produce ATP can effectively enhance the conversion rate of substrate and reduce the catalytic cost, achieving high yield, high conversion rate and high economic value for glutathione production by cell-free catalysis. This study provides a green and efficient ATP regeneration system that may further power the ATP-consuming biocatalytic reaction platform.

    参考文献
    [1] VU HUU K, ZANGL R, HOFFMANN J, JUST A, MORGNER N. Bacterial F-type ATP synthases follow a well-choreographed assembly pathway[J]. Nature Communications, 2022, 13:1218.
    [2] FEDORCHUK TP, KHUSNUTDINOVA AN, EVDOKIMOVA E, FLICK R, Di LEO R, STOGIOS P, SAVCHENKO A, YAKUNIN AF. One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1,6-hexamethylenediamine using carboxylic acid reductases and transaminases[J]. Journal of the American Chemical Society, 2020, 142(2):1038-1048.
    [3] ZHANG YL, GONG SY, WANG X, MUHAMMAD M, LI YY, MENG SS, LI Q, LIU D, ZHANG HD. Insights into the inhibition of Aeromonas hydrophila D-alanine-D-alanine ligase by integration of kinetics and structural analysis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(28):7509-7519.
    [4] LV QL, HU MK, TIAN LZ, LIU F, WANG Q, XU MJ, RAO ZM. Enhancing L-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy[J]. Bioresource Technology, 2021, 341:125799.
    [5] XIONG ZQ, KONG LH, WANG GQ, XIA YJ, ZHANG H, YIN BX, AI LZ. Functional analysis and heterologous expression of bifunctional glutathione synthetase from Lactobacillus[J]. Journal of Dairy Science, 2018, 101(8):6937-6945.
    [6] CHEN YW, TAN TW. Enhanced S-adenosylmethionine production by increasing ATP levels in baker's yeast (Saccharomyces cerevisiae)[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20):5200-5209.
    [7] SINGH M, TIWARI P, ARORA G, AGARWAL S, KIDWAI S, SINGH R. Establishing virulence associated polyphosphate kinase 2 as a drug target for Mycobacterium tuberculosis[J]. Scientific Reports, 2016, 6:26900.
    [8] NOCEK BP, KHUSNUTDINOVA AN, RUSZKOWSKI M, FLICK R, BURDA M, BATYROVA K, BROWN G, MUCHA A, JOACHIMIAK A, BERLICKI Ł, YAKUNIN AF. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases[J]. ACS Catalysis, 2018, 8(11):10746-10760.
    [9] BROWN MRW, KORNBERG A. Inorganic polyphosphate in the origin and survival of species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46):16085-16087.
    [10] LINDNER SN, VIDAURRE D, WILLBOLD S, SCHOBERTH SM, WENDISCH VF. NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2007, 73(15):5026-5033.
    [11] TAVANTI M, HOSFORD J, LLOYD RC, BROWN MJB. ATP regeneration by a single polyphosphate kinase powers multigram-scale aldehyde synthesis in vitro[J]. Green Chemistry, 2021, 23(2):828-837.
    [12] KOBAYASHI J, SASAKI D, HARA KY, HASUNUMA T, KONDO A. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1):1-10.
    [13] 周文龙, 唐亮, 成凯, 刘忞之, 杨燕, 王伟. CRISPR/Cas9介导的高产谷胱甘肽原养型酵母工程菌的构建[J]. 生物工程学报, 2017, 33(12):1999-2008. ZHOU WL, TANG L, CHENG K, LIU LZ, YANG Y, WANG W. Construction of prototrophic glutathione-high-producing yeast strain mediated by CRISPR/Cas9[J]. Chinese Journal of Biotechnology, 2017, 33(12):1999-2008(in Chinese).
    [14] CHEN HL, CAO XT, ZHU NQ, JIANG LH, ZHANG XG, HE QM, WEI PH. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism[J]. World Journal of Microbiology and Biotechnology, 2020, 36(8):1-10.
    [15] SCHMACHT M, LORENZ E, STAHL U, SENZ M. Medium optimization based on yeast's elemental composition for glutathione production in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2017, 123(5):555-561.
    [16] LIU W, ZHU XC, LIAN JZ, HUANG L, XU ZN. Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(12):1685-1695.
    [17] ZHANG J, QUAN C, WANG C, WU H, LI ZM, YE Q. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production[J]. Microbial Cell Factories, 2016, 15:38.
    [18] YANG JH, LI W, WANG DZ, WU H, LI ZM, YE Q. Characterization of bifunctional l-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis[J]. Applied Microbiology and Biotechnology, 2016, 100(14):6279-6289.
    [19] TANG SM, LIAO DC, LI XW, LIN Y, HAN SY, ZHENG SP. Cell-free biosynthesis system:methodology and perspective of in vitro efficient platform for pyruvate biosynthesis and transformation[J]. ACS Synthetic Biology, 2021, 10(10):2417-2433.
    [20] CAO H, LI CC, ZHAO J, WANG F, TAN TW, LIU L. Enzymatic production of glutathione coupling with an ATP regeneration system based on polyphosphate kinase[J]. Applied Biochemistry and Biotechnology, 2018, 185(2):385-395.
    [21] ZHANG X, WU H, HUANG B, LI ZM, YE Q. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system[J]. Journal of Biotechnology, 2017, 241:163-169.
    [22] ZHU YB, LIANG MF, LI HB, NI H, LI LJ, LI, QB, JIANG ZD. A mutant of Pseudoalteromonas carrageenovora arylsulfatase with enhanced enzyme activity and its potential application in improvement of the agar quality[J]. Food Chemistry, 2020, 320:126652.
    [23] BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2):248-254.
    [24] CUI CX, MING H, LI LJ, LI MJ, GAO J,HAN T, WANG YY. Fabrication of an in-situ co-immobilized enzyme in mesoporous silica for synthesizing GSH with ATP regeneration[J]. Molecular Catalysis, 2020, 486:110870.
    [25] 陈佳杰, 徐美娟, 杨套伟, 张显, 邵明龙, 李华钟, 饶志明. 亮氨酸脱氢酶C端Loop区域的理性设计及多酶级联高效合成L-2-氨基丁酸[J]. 生物工程学报, 2021, 37(12):4254-4265. CHEN JJ, XU MJ, YANG TW, ZHANG X, SHAO ML, LI HZ, RAO ZM. Rational design of the C-terminal loop region of leucine dehydrogenase and cascade biosynthesis L-2-aminobutyric acid[J]. Chinese Journal of Biotechnology, 2021, 37(12):4254-4265(in Chinese).
    [26] ZONG ZY, HE RL, FU HH, ZHAO TF, CHEN SL, SHAO XG, ZHANG DY, CAI WS. Pretreating cellulases with hydrophobins for improving bioconversion of cellulose:an experimental and computational study[J]. Green Chemistry, 2016, 18(24):6666-6674.
    [27] 柴宝成, 姜钰琳, 倪晔, 韩瑞枝. 环糊精葡萄糖基转移酶182位点定点改造催化合成糖基化染料木素[J]. 生物工程学报, 2022, 38(2):749-759. CHAI BC, JIANG YL, NI Y, HAN RZ. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis[J]. Chinese Journal of Biotechnology, 2022, 38(2):749-759(in Chinese).
    [28] GOTTSCHALK J, AßMANN M, KUBALLA J, ELLING L. Repetitive synthesis of high-molecular-weight hyaluronic acid with immobilized enzyme cascades[J]. ChemSusChem, 2022, 15(9):e202101071.
    [29] ZHOU JP, ZHANG RZ, YANG TW, LIU QL, ZHENG JX, WANG F, LIU F, XU MJ, ZHANG X, RAO ZM. Relieving allosteric inhibition by designing active inclusion bodies and coating of the inclusion bodies with Fe3 O4 nanomaterials for sustainable 2-oxobutyric acid production[J]. ACS Catalysis, 2018, 8(9):8889-8901.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高惠,王晴,刘婷婷,徐美娟,饶志明. 多聚磷酸盐激酶双底物通道腔的理性设计及其在无细胞催化生产谷胱甘肽中的应用[J]. 生物工程学报, 2023, 39(8): 3318-3335

复制
分享
文章指标
  • 点击次数:384
  • 下载次数: 1274
  • HTML阅读次数: 851
  • 引用次数: 0
历史
  • 收稿日期:2023-01-08
  • 最后修改日期:2023-03-24
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6014050位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司