转运蛋白提高凝结芽孢杆菌酸耐受性
作者:
基金项目:

国家自然科学基金(32070026, 31971204);河北省自然科学基金(C2020205004)


Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    光学纯乳酸作为可降解生物材料——聚乳酸(polylactic acid,PLA)的前体物质,正在受到广泛关注。乳酸发酵过程中酸性产物的积累会影响菌株的生长,提高菌株酸耐受性具有重要意义。本研究以乳酸生产菌株凝结芽孢杆菌(Bacillus coagulans) DSM1为出发菌株,通过对凝结芽孢杆菌DSM1及其乳酸脱氢酶双敲除菌株(DldhL1DldhL2)进行比较转录分析,筛选酸耐受相关的转运蛋白基因。对关键基因RS16330RS06895RS16325RS10595RS00500RS07275RS10635RS01930进行实时定量PCR分析,发现基因RS06895RS10595RS00500RS10635在发酵12 h和24 h转录水平显著增强。过表达RS10595基因的菌株,在中性(pH 6.0)条件下生长状况和发酵性能均受到抑制,但在酸性条件下(pH 4.6),其乳酸生成相比对照组显著提高。上述结果表明,RS10595基因与菌株DSM1的酸耐受性密切相关。本研究有助于进一步探究凝结芽孢杆菌酸耐受的机制,也为构建耐酸菌株提供了基础。

    Abstract:

    As the precursor of polylactic acid (PLA), optically pure l-lactic acid production is attracting increasing attention. The accumulation of lactic acid during fermentation inhibits strain growth. Therefore, it is necessary to improve the acid tolerance of lactic acid producers. In this study, comparative transcriptomic analysis was performed to investigate the effects of transporters on lactic acid tolerance of Bacillus coagulans DSM1, which is an l-lactic acid producer. The genes with more than two-fold up-regulation in transcriptional profile were further verified using real-time PCR. The transcriptional levels of RS06895, RS10595, RS10595, RS00500, RS00500, RS10635 and RS10635 were enhanced during lactic acid fermentation. Strain overexpressing RS10595 exhibited a retarded cell growth and low lactic acid production at pH 6.0, but an improved lactic acid production at pH 4.6. This study may facilitate the investigation of the acid tolerance mechanism in B. coagulans DSM1, as well as the construction of efficient lactic acid producers.

    参考文献
    [1] GAO C, MA C, XU P. Biotechnological routes based on lactic acid production from biomass[J]. Biotechnology Advances, 2011, 29(6):930-939.
    [2] ABDEL-RAHMAN MA, TASHIRO Y, SONOMOTO K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria:overview and limits[J]. Journal of Biotechnology, 2011, 156(4):286-301.
    [3] SINGHVI MS, ZINJARDE SS, GOKHALE DV. Polylactic acid:synthesis and biomedical applications[J]. Journal of Applied Microbiology, 2019, 127(6):1612-1626.
    [4] JOHN RP, NAMPOOTHIRI KM, PANDEY A. Fermentative production of lactic acid from biomass:an overview on process developments and future perspectives[J]. Applied Microbiology and Biotechnology, 2007, 74(3):524-534.
    [5] 胡金龙. 凝结芽孢杆菌LA204高得率高浓度玉米秸秆同步糖化乳酸发酵研究[D]. 武汉:华中农业大学博士学位论文, 2015. HU JL. High-efficient and titer lactic acid production from corn stover by Bacillus coagulans LA204 using simultaneous saccharification and fermentation[D]. Wuhan:Doctoral Dissertation of Huazhong Agricultural University, 2015(in Chinese).
    [6] HOFVENDAHL K, HAHN-HÄGERDAL B. Factors affecting the fermentative lactic acid production from renewable resources[J]. Enzyme and Microbial Technology, 2000, 26(2/3/4):87-107.
    [7] LITCHFIELD JH. Lactic acid, microbially produced[M]//Encyclopedia of Microbiology. Amsterdam:Elsevier, 2009:362-372.
    [8] REDDY G, ALTAF M, NAVEENA BJ, VENKATESHWAR M, KUMAR EV. Amylolytic bacterial lactic acid fermentation-a review[J]. Biotechnology Advances, 2008, 26(1):22-34.
    [9] SINGH SK, AHMED SU, PANDEY A. Metabolic engineering approaches for lactic acid production[J]. Process Biochemistry, 2006, 41(5):991-1000.
    [10] 张桦宇. 重组大肠杆菌利用蔗糖生产l-乳酸[D]. 天津:天津科技大学硕士学位论文, 2020. ZHANG HY. Production of l-lactic acid from sucrose by engineered Escherichia coli[D]. Tianjin:Master's Thesis of Tianjin University of Science & Technology, 2020(in Chinese).
    [11] JIA XQ, LIU P, LI S, LI SS, WEN JP. d-lactic acid production by a genetically engineered strain Corynebacterium glutamicum[J]. World Journal of Microbiology and Biotechnology, 2011, 27(9):2117-2124.
    [12] QIN JY, ZHAO B, WANG XW, WANG LM, YU B, MA YH, MA CQ, TANG HZ, SUN JB, XU P. Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2-6[J]. PLoS One, 2009, 4(2):e4359.
    [13] ZHAO B, WANG LM, MA CQ, YANG CY, XU P, MA YH. Repeated open fermentative production of optically pure l-lactic acid using a thermophilic Bacillus sp. strain[J]. Bioresource Technology, 2010, 101(16):6494-6498.
    [14] 张阳玲. 酸胁迫下乳酸乳球菌细胞壁相关基因调控机制研究[D]. 天津:天津大学硕士学位论文, 2020. ZHANG YL. Research on regulation mechanism of genes related cell wall in Lactococcus lactis under acid stress[D]. Tianjin:Master's Thesis of Tianjin University, 2020(in Chinese).
    [15] SERRAZANETTI DI, GUERZONI ME, CORSETTI A, VOGEL R. Metabolic impact and potential exploitation of the stress reactions in lactobacilli[J]. Food Microbiology, 2009, 26(7):700-711.
    [16] YANG YS, KADIM MI, KHOO WJ, ZHENG QW, SETYAWATI MI, SHIN YJ, LEE SC, YUK HG. Membrane lipid composition and stress/virulence related gene expression of Salmonella enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress[J]. International Journal of Food Microbiology, 2014, 191:24-31.
    [17] MONTANARI C, SADO KAMDEM SL, SERRAZANETTI DI, ETOA FX, ELISABETTA GUERZONI M. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses[J]. Food Microbiology, 2010, 27(4):493-502.
    [18] 赵皓静. 耐酸乳杆菌产酸特性及酸胁迫应答机制[D]. 贵阳:贵州大学硕士学位论文, 2022. ZHAO HJ. Acid production characteristics of Lactobacillus acetotolerans and its response mechanism to acid stress[D]. Guiyang:Master's Thesis of Guizhou University, 2022(in Chinese).
    [19] 杨佩珊. 基于跨膜蛋白研究提高Lactococcus lactis NZ9000酸胁迫抗性[D]. 无锡:江南大学硕士学位论文, 2019. YANG PS. Based on research of transmembrane protein to improve Lactococcus lactis NZ9000 acid stress resistance[D]. Wuxi:Master's Thesis of Jiangnan University, 2019(in Chinese).
    [20] GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA III, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5):343-345.
    [21] LI TH, ZHANG TT, GAO HM, WANG HH, YAN HH, WAN ZH, LIU RX, YIN CH. Tempol modulates lncRNA-miRNA-mRNA ceRNA networks in ovaries of DHEA induced PCOS rats[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2023, 226:106175.
    [22] MIRA NP, TEIXEIRA MC, SÁ-CORREIA I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae:a genome-wide view[J]. OMICS:A Journal of Integrative Biology, 2010, 14(5):525-540.
    [23] ZHU ZM, YANG JH, YANG PS, WU ZM, ZHANG J, DU GC. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters[J]. Microbial Cell Factories, 2019, 18(1):1-14.
    [24] SUGIYAMA M, AKASE SP, NAKANISHI R, KANEKO Y, HARASHIMA S. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2016, 122(4):415-420.
    [25] GUAN NZ, LI JH, SHIN HD, DU GC, CHEN J, LIU L. Microbial response to environmental stresses:from fundamental mechanisms to practical applications[J]. Applied Microbiology and Biotechnology, 2017, 101(10):3991-4008.
    [26] NAKANO S, ZHENG GL, NAKANO MM, ZUBER P. Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis[J]. Journal of Bacteriology, 2002, 184(13):3664-3670.
    [27] KAJFASZ JK, MARTINEZ AR, RIVERA-RAMOS I, ABRANCHES J, KOO H, QUIVEY RG, LEMOS JA. Role of Clp proteins in expression of virulence properties of Streptococcus mutans[J]. Journal of Bacteriology, 2009, 191(7):2060-2068.
    [28] WANG Y, ZHANG CL, LIU GX, JU JS, YU B, WANG LM. Elucidating the role and regulation of a lactate permease as lactate transporter in Bacillus coagulans DSM1[J]. Applied and Environmental Microbiology, 2019, 85(14):e00672-e00619.
    [29] TIAN WZ, QIN JY, LIAN CC, YAO QS, WANG XW. Identification of a major facilitator superfamily protein that is beneficial to l-lactic acid production by Bacillus coagulans at low pH[J]. BMC Microbiology, 2022, 22(1):310.
    [30] 焦凌霞, 徐茜茜, 刘媛, 张霄, 刘贝贝, 梁颖, 刘贤金. 基于同源建模与分子对接技术构建抗Bt Cry1类毒素单链抗体定点饱和突变库[J]. 现代食品科技, 2016, 32(3):12-17. JIAO LX, XU XX, LIU Y, ZHANG X, LIU BB, LIANG Y, LIU XJ. Site-directed saturation mutagenesis library of Bacillus thuringiensis Cry1 toxin-specific single-chain antibody fragment by homology modeling and molecular docking[J]. Modern Food Science and Technology, 2016, 32(3):12-17(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李静,王玉,于波,王丽敏,鞠建松. 转运蛋白提高凝结芽孢杆菌酸耐受性[J]. 生物工程学报, 2023, 39(8): 3394-3405

复制
分享
文章指标
  • 点击次数:253
  • 下载次数: 1110
  • HTML阅读次数: 716
  • 引用次数: 0
历史
  • 收稿日期:2022-12-07
  • 最后修改日期:2023-04-06
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6014050位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司