普鲁兰酶在需钠弧菌中的分泌表达与发酵优化
作者:
基金项目:

南京林业大学青年拔尖人才培养计划(GXL2018010);江苏省高校优秀中青年教师和校长境外研修计划 (2020)


Secretory expression and fermentation optimization for extracellular production of pullulanase in Vibrio natriegens
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    普鲁兰酶是一种淀粉脱支酶,因其分子量较大,胞外分泌表达难度较高。需钠弧菌(Vibrio natriegens)是一种新型的蛋白表达宿主,拥有高效的蛋白合成效率。本研究使用基因组整合T7 RNA聚合酶表达框的V.natriegens VnDX为宿主,构建了产全长普鲁兰酶PulA及其截短突变体PulN2的重组需钠弧菌,分析了信号肽、发酵温度、诱导剂浓度、甘氨酸浓度及发酵时间等条件对产酶的影响,并且对比了2种普鲁兰酶在V.natriegens VnDX与大肠杆菌(Escherichia coli) BL21(DE3)中的胞外产酶能力。研究结果显示,普鲁兰酶PulA和PulN2在V.natriegens VnDX中的胞外酶活为61.6 U/mL和64.3 U/mL,分别为E.coli BL21(DE3)最大酶活力的110%和62%。上述结果表明V.natriegens VnDX可以分泌表达大分子量的全长普鲁兰酶PulA,本研究可为其他大分子量蛋白在V.natriegens VnDX中的分泌表达提供参考和借鉴。

    Abstract:

    Pullulanase is a starch debranching enzyme, which is difficult in secretory expression due to its large molecular weight. Vibrio natriegens is a novel expression host with excellent efficiency in protein synthesis. In this study, we achieved secretory expression of the full-length pullulanase PulA and its truncated mutant PulN2 using V. natriegens VnDX strain. Subsequently, we investigated the effects of signal peptide, fermentation temperature, inducer concentration, glycine concentration and fermentation time on the secretory expression. Moreover, the extracellular enzyme activities of the two pullulanases produced in V. natriegens VnDX and E. coli BL21(DE3) were compared. The highest extracellular enzyme activity of PulA and PulN2 in V. natriegens VnDX were 61.6 U/mL and 64.3 U/mL, which were 110% and 62% that of those in E. coli BL21(DE3), respectively. The results indicated that V. natriegens VnDX can be used for secretory expression of the full-length PulA with large molecular weight, which may provide a reference for the secretory expression of other large molecular weight proteins in V. natriegens VnDX.

    参考文献
    [1] 黄婷婷, 张玉华, 段绪果. 普鲁兰酶的异源表达、结构解析及分子改造研究进展[J]. 生物工程学报, 2022, 38(12):4432-4448. HUANG TT, ZHANG YH, DUAN XG. Advances in heterologous expression, structural elucidation and molecular modification of pullulanase[J]. Chinese Journal of Biotechnology, 2022, 38(12):4432-4448(in Chinese).
    [2] XU P, ZHANG SY, LUO ZG, ZONG MH, LI XX, LOU WY. Biotechnology and bioengineering of pullulanase:state of the art and perspectives[J]. World Journal of Microbiology and Biotechnology, 2021, 37(3):1-10.
    [3] BANEYX F, MUJACIC M. Recombinant protein folding and misfolding in Escherichia coli[J]. Nature Biotechnology, 2004, 22(11):1399-1408.
    [4] WANG XY, CHEN YQ, NIE Y, XU Y. Improvement of extracellular secretion efficiency of Bacillus naganoensis pullulanase from recombinant Escherichia coli:peptide fusion and cell wall modification[J]. Protein Expression and Purification, 2019, 155:72-77.
    [5] SONG W, NIE Y, MU XQ, XU Y. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis:effects of promoter and host[J]. Protein Expression and Purification, 2016, 124:23-31.
    [6] WEINSTOCK MT, HESEK ED, WILSON CM, GIBSON DG. Vibrio natriegens as a fast-growing host for molecular biology[J]. Nature Methods, 2016, 13(10):849-851.
    [7] EAGON RG. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes[J]. Journal of Bacteriology, 1962, 83(4):736-737.
    [8] LONG CP, GONZALEZ JE, CIPOLLA RM, ANTONIEWICZ MR. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis[J]. Metabolic Engineering, 2017, 44:191-197.
    [9] AIYAR SE, GAAL T, GOURSE RL. rRNA promoter activity in the fast-growing bacterium Vibrio natriegens[J]. Journal of Bacteriology, 2002, 184(5):1349-1358.
    [10] XU J, YANG S, YANG L. Vibrio natriegens as a host for rapid biotechnology[J]. Trends in Biotechnology, 2022, 40(4):381-384.
    [11] ZHU ML, MU HY, JIA MM, DENG LF, DAI XF. Control of ribosome synthesis in bacteria:the important role of rRNA chain elongation rate[J]. Science China Life Sciences, 2021, 64(5):795-802.
    [12] HOFFART E, GRENZ S, LANGE JL, NITSCHEL R, MÜLLER F, SCHWENTNER A, FEITH A, LENFERS-LÜCKER M, TAKORS R, BLOMBACH B. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology[J]. Applied and Environmental Microbiology, 2017, 83(22):e01614-17.
    [13] UTRILLA J, O'BRIEN EJ, CHEN K, McCLOSKEY D, CHEUNG J, WANG H, ARMENTA-MEDINA D, FEIST AM, PALSSON BO. Global rebalancing of cellular resources by pleiotropic point mutations illustrates a multi-scale mechanism of adaptive evolution[J]. Cell Systems, 2016, 2(4):260-271.
    [14] STELLA RG, BAUMANN P, LORKE S, MÜNSTERMANN F, WIRTZ A, WIECHERT J, MARIENHAGEN J, FRUNZKE J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains[J]. Metabolic Engineering Communications, 2021, 13:e00187.
    [15] WANG Z, TSCHIRHART T, SCHULTZHAUS Z, KELLY EE, CHEN A, OH E, NAG O, GLASER ER, KIM E, LLOYD PF, CHARLES PT, LI WY, LEARY D, COMPTON J, PHILLIPS DA, DHINOJWALA A, PAYNE GF, VORA GJ. Melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis:characterization and application[J]. Applied and Environmental Microbiology, 2020, 86(5):e02749-19.
    [16] CHIEN CC, CHEN CC, CHOI MH, KUNG SS, WEI YH. Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment[J]. Journal of Biotechnology, 2007, 132(3):259-263.
    [17] ZHANG Y, LI ZH, LIU Y, CEN XC, LIU DH, CHEN Z. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol[J]. Metabolic Engineering, 2021, 65:52-65.
    [18] KORMANOVÁ Ľ, RYBECKÁ S, LEVARSKI Z, STRUHÁRŇANSKÁ E, LEVARSKÁ L, BLAŠKO J, TURŇA J, STUCHLÍK S. Comparison of simple expression procedures in novel expression host Vibrio natriegens and established Escherichia coli system[J]. Journal of Biotechnology, 2020, 321:57-67.
    [19] XU JQ, DONG F, WU MX, TAO RS, YANG JJ, WU MB, JIANG Y, YANG S, YANG LR. Vibrio natriegens as a pET-compatible expression host complementary to Escherichia coli[J]. Frontiers in Microbiology, 2021, 12:627181.
    [20] 崔阳, 董涛. 需钠弧菌外膜囊泡的蛋白质组分析与异源蛋白的递送(英文)[J]. 微生物学通报, 2021, 48(12):4564-4580. CUI Y, DONG T. Proteome analysis and heterologous cargo delivery of Vibrio natriegens outer membrane vesicles[J]. Microbiology China, 2021, 48(12):4564-4580(in Chinese).
    [21] 黄学娟, 张金迪, 张壮, 李裕静, 曹雪松, 胡全安. 一种优化的大肠杆菌感受态细胞制备及转化方法[J]. 基因组学与应用生物学, 2017, 36(12):5199-5204. HUANG XJ, ZHANG JD, ZHANG Z, LI YJ, CAO XS, HU QA. An optimized method for preparation and transformation of Escherichia coli competent cells[J]. Genomics and Applied Biology, 2017, 36(12):5199-5204(in Chinese).
    [22] 徐雪姣, 查向东, 车媛媛, 马利娟, 吴思群, 杨培龙, 黄火清, 姚斌. 美洲拟鲽抗菌肽Pleurocidin在大肠杆菌中的高效分泌表达及优化[J]. 生物工程学报, 2016, 32(3):365-374. XU XJ, ZHA XD, CHE YY, MA LJ, WU SQ, YANG PL, HUANG HQ, YAO B. Expression of pleurocidin from winter flounder in Escherichia coli and optimization of culture conditions[J]. Chinese Journal of Biotechnology, 2016, 32(3):365-374(in Chinese).
    [23] NIK-PA NIM, SOBRI MFM, ABD-AZIZ S, IBRAHIM MF, KAMAL BAHRIN E, MOHAMMED ALITHEEN NB, RAMLI N. Combined optimization of codon usage and glycine supplementation enhances the extracellular production of a β-cyclodextrin glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli[J]. International Journal of Molecular Sciences, 2020, 21(11):3919.
    [24] LU JW, Zhang JG. Extracellular expression of Aerococcus viridans pyruvate oxidase in recombinant Escherichia coli through SecB co-expression[J]. RSC Advances, 2019, 9(45):26291-26301.
    [25] 吴凤礼, 梁艳霞, 张媛媛, 霍亚楠, 王钦宏. 新型生长快速需钠弧菌基因组无痕编辑体系构建[J]. 生物工程学报, 2020, 36(11):2387-2397. WU FL, LIANG YX, ZHANG YY, HUO YN, WANG QH. Construction of seamless genome editing system for fast-growing Vibrio natriegens[J]. Chinese Journal of Biotechnology, 2020, 36(11):2387-2397(in Chinese).
    [26] 王静, 彭源, 许平, 陶飞. 下一代底盘微生物Vibrio sp. FA2的抗生素抗性[J]. 微生物学通报, 2022, 49(3):861-874. WANG J, PENG Y, XU P, TAO F. Antibiotic resistance of next-generation microbial workhorses:a case of Vibrio sp. FA2[J]. Microbiology China, 2022, 49(3):861-874(in Chinese).
    [27] 李家冬, 王弘. 重组蛋白正确折叠与修饰的提高策略[J]. 生物工程学报, 2017, 33(4):591-600. LI JD, WANG H. Strategies to improve the folding and modification of recombinant proteins:a review[J]. Chinese Journal of Biotechnology, 2017, 33(4):591-600(in Chinese).
    [28] ZOU C, DUAN XG, WU J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy[J]. Bioresource Technology, 2014, 172:174-179.
    [29] ZHANG K, SU LQ, WU J. Enhancing extracellular pullulanase production in Bacillus subtilis through dltB disruption and signal peptide optimization[J]. Applied Biochemistry and Biotechnology, 2022, 194(3):1206-1220.
    [30] 李兵. 普鲁兰酶基因的克隆及其在毕赤酵母中的表达[J]. 食品与发酵科技, 2012, 48(6):24-27. LI B. Cloning and expression of pullulanase gene in Pichia Yeast[J]. Food and Fermentation Science and Technology, 2012, 48(6):24-27(in Chinese).
    [31] 王兵波, 沈微, 钱灵紫, 李琛, 罗枭, 樊游, 陈献忠. 一种密码子优化的酸性普鲁兰酶基因在巴斯德毕赤酵母中的高效表达[J]. 食品与发酵工业, 2016, 42(7):9-15. WANG BB, SHEN W, QIAN LZ, LI C, LUO X, FAN Y, CHEN XZ. High expression of a codon-optimized acid-resistant pullulanase-enconding gene in Pichia pastoris[J]. Food and Fermentation Industries, 2016, 42(7):9-15(in Chinese).
    [32] WANG XY, NIE Y, XU Y. Industrially produced pullulanases with thermostability:discovery, engineering, and heterologous expression[J]. Bioresource Technology, 2019, 278:360-371.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张玉华,段绪果. 普鲁兰酶在需钠弧菌中的分泌表达与发酵优化[J]. 生物工程学报, 2023, 39(8): 3421-3435

复制
分享
文章指标
  • 点击次数:333
  • 下载次数: 1233
  • HTML阅读次数: 872
  • 引用次数: 0
历史
  • 收稿日期:2022-12-05
  • 最后修改日期:2023-02-08
  • 在线发布日期: 2023-08-10
  • 出版日期: 2023-08-25
文章二维码
您是第6558304位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司