Mining and identification of a biosynthetic gene cluster producing xanthocillin analogues from Penicillium chrysogenum MT-40, an endophytic fungus of Huperzia serrata
Xanthocillin is a unique natural product with an isonitrile group and shows remarkable antibacterial activity. In this study, the genome of an endophytic fungus Penicillium chrysogenum MT-40 isolated from Huperzia serrata was sequenced, and the gene clusters with the potential to synthesize xanthocillin analogues were mined by local BLAST and various bioinformatics analysis tools. As a result, a biosynthetic gene cluster (named for) responsible for the biosynthesis of xanthocillin analogues was identified by further heterologous expression of the key genes in Aspergillus oryzae NSAR1. Specifically, the ForB catalyzes the synthesis of 2-formamido-3-(4-hydroxyphenyl) acrylic acid, and the ForG catalyzes the dimerization of 2-formamido-3-(4-hydroxyphenyl) acrylic acid to produce the xanthocillin analogue N,N'-(1,4-bis (4-hydroxyphenyl) buta-1,3-diene-2,3-diyl) diformamide. The results reported here provide a reference for further discovery of xanthocillin analogues from fungi.
[1] MATTHEW C, RAINER B, ERIKO T. Steps towards the synthetic biology of polyketide biosynthesis[J]. FEMS Microbiology Letters, 2014, 351(2):116-125.
[2] PYE CR, BERTIN MJ, LOKEY RS, GERWICK WH, LININGTON RG. Retrospective analysis of natural products provides insights for future discovery trends[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2017, 114(22):5601-5606.
[3] MEDEMA MH, de ROND T, MOORE BS. Mining genomes to illuminate the specialized chemistry of life[J]. Nature Reviews Genetics, 2021, 22(9):553-571.
[4] WALSH CT, FISCHBACH MA. Natural products version 2.0:connecting genes to molecules[J]. Journal of the American Chemical Society, 2010, 132(8):2469-2493.
[5] JENSEN PAUL R, CHAVARRIA KRYSTLE L, WILLIAM F, MOORE BRADLEY S, NADINE Z. Challenges and triumphs to genomics-based natural product discovery[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(2):203-209.
[6] 周锐, 廖国建, 胡昌华. 丝状真菌次级代谢产物生物合成的表观遗传调控[J]. 生物工程学报, 2011, 27(08):1142-1148.ZHOU R, LIAO GJ, HU CH. Epigenetic regulation of secondary metabolite biosynthesis in filamentous fungi:a review[J]. Chinese Journal Biotechnology, 2011, 27(08):1142-1148(in Chinese).
[7] ROTHE W. Das neue antibiotikum xanthocillin[J]. Deutsche Medizinische Wochenschrift, 1954, 79(27/28):1080-1081.
[8] VESONDER RF. Xanthocillin, a metabolite of Eupenicillium egyptiacum NRRL 1022[J]. Journal of the Natural Products, 1979, 42(2):232-233.
[9] SHANG Z, LI XM, MENG L, LI CS, GAO SS, HUANG CG, WANG BG. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(2):305-314.
[10] ISAKA M, BOONKHAO B, RACHTAWEE P, AUNCHAROEN P. A xanthocillin-like alkaloid from the insect pathogenic fungus Cordyceps brunnearubra BCC 1395[J]. Journal of Natural Products, 2007, 70(4):656-658.
[11] HÜBNER I, SHAPIRO JA, HOßMANN J, DRECHSEL J, HACKER SM, RATHER PN, PIEPER DH, WUEST WM, SIEBER SA. Broad spectrum antibiotic xanthocillin X effectively kills Acinetobacter baumannii via dysregulation of heme biosynthesis[J]. ACS Central Science, 2021, 7(3):488-498.
[12] YAMAGUCHI T, MIYAKE Y, MIYAMURA A, ISHIWATA N, TATSUTA K. Structure-activity relationships of xanthocillin derivatives as thrombopoietin receptor agonist[J]. The Journal of Antibiotics, 2006, 59(11):729-734.
[13] BRADY SF, CLARDY J. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA[J]. Angewandte Chemie- International Edition, 2005, 44(43):7063-7065.
[14] CLARKE-PEARSON MF, BRADY SF. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2008, 190(20):6927-6930.
[15] HILLWIG ML, ZHU Q, LIU XY. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua[J]. ACS Chemical Biology, 2014, 9(2):372-377.
[16] HILLWIG ML, FUHRMAN HA, ITTIAMORNKUL K, SEVCO TJ, KWAK DH, LIU XY. Identification and characterization of a welwitindolinone alkaloid biosynthetic gene cluster in the stigonematalean CyanobacteriumHapalosiphon welwitschii[J]. ChemBioChem, 2014, 15(5):665-669.
[17] LIM FY, WON TH, RAFFA N, BACCILE JA, WISECAVER J, ROKAS A, SCHROEDER FC, KELLER NP. Fungal isocyanide synthases and xanthocillin biosynthesis in Aspergillus fumigatus[J]. mBio, 2018, 9(3):e00785-18.
[18] CHANG WC, SANYAL D, HUANG JL, ITTIAMORNKUL K, ZHU Q, LIU XY. In vitro stepwise reconstitution of amino acid derived vinyl isocyanide biosynthesis:detection of an elusive intermediate[J]. Organic Letters, 2017, 19(5):1208-1211.
[19] CHEN TY, CHEN JF, TANG YJ, ZHOU JH, GUO YS, CHANG WC. Current understanding toward isonitrile group biosynthesis and mechanism[J]. Chinese Journal of Chemistry, 2021, 39(2):463-472.
[20] HARRIS NC, SATO M, HERMAN NA, TWIGG F, CAI W, LIU J, ZHU X, DOWNEY J, KHALAF R, MARTIN J, KOSHINO H, ZHANG W. Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in actinobacteria[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2017, 114(27):7025-7030.
[21] WANG LJ, ZHU MY, ZHANG QB, ZHANG X, YANG PL, LIU ZH, DENG Y, ZHU YG, HUANG XS, HAN L, LI SQ, HE J. Diisonitrile natural product SF2768 functions as a chalkophore that mediates copper acquisition in Streptomyces thioluteus[J]. ACS Chemical Biology, 2017, 12(12):3067-3075.
[22] 贾放放, 齐博文, 张蓓蓓, 王雯静, 王阳, 石璠钰, 刘晓, 朱枝祥, 王娟, 史社坡. 蛇足石杉内生真菌Penicillium chrysogenum MT-40的代谢产物研究[J]. 中草药, 2022, 53(13):3904-3911.JIA FF, QI BW, ZHANG BB, WANG WW, WANG Y, SHI FY, LIU X, ZHU ZX, WANG J, SHI SP. Metabolites from Penicillium chrysogenum MT-40, an endophytic fungus isolated from Huperzia serrata[J]. Chinese Traditional and Herbal Drugs, 2022, 53(13):3904-3911(in Chinese).
[23] 石璠钰, 杨洪芸, 莫婷, 齐博文, 王雯静, 张蓓蓓, 刘晓, 史社坡. 蛇足石杉内生真菌Cladosporium tenuissimum MT-35的代谢产物研究[J]. 天然产物研究与开发, 2022, 34(06):981-986.SHI FY, YANG HY, MO T, QI BW, WANG WJ, ZHANG BB, LIU X, SHI SP. Metabolites of endophytic fungus Cladosporium tenuissimum MT-35 from Huperia serrata[J]. Natural Product Research and Development, 2022, 34(6):981-986(in Chinese).
[24] QI BW, LI N, ZHANG BB, ZHANG ZK, WANG WJ, LIU X, WANG J, AWAKAWA T, TU PF, ABE I, SHI SP, LI J. A multifunctional cytochrome P450 and a meroterpenoid cyclase in the biosynthesis of fungal meroterpenoid atlantinone B[J]. Organic Letters, 2022, 24(13):2526-2530.
[25] HELALY SE, ASHRAFI S, TEPONNO RB, BERNECKER S, DABABAT AA, MAIER W, STADLER M. Nematicidal cyclic lipodepsipeptides and a xanthocillin derivative from a phaeosphariaceous fungus parasitizing eggs of the plant parasitic nematode Heterodera filipjevi[J]. Journal of Natural Products, 2018, 81(10):2228-2234.
[26] MARTÍN R, CARMEN MD, GARCÍA C, SONIA, MUÑOZ B, SANTOS J, FONDEVILA A, LUIS J, ALVAREZ V, JAVIER. Synthesis of xanthoxyline analogs for treating neurodegenerative diseases:PCT/ES2013/070065[P]. 2013-08-15.
[27] WON TH, BOK JW, NADIG N, VENKATESH N, NICKLES G, GRECO C, LIM FY, GONZÁLEZ JB, TURGEON BG, KELLER NP, SCHROEDER FC. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi[J]. Nature Communications, 2022, 13(1):4828.
[28] RAFFA N, WON TH, SUKOWATY A, CANDOR K, CUI CS, HALDER S, DAI MJ, LANDERO- FIGUEROA JA, SCHROEDER FC, KELLER NP. Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2021, 118(8):e2015224118.
[29] YU CP, TANG YJ, CHA LD, MILIKISIYANTS S, SMIRNOVA TI, SMIRNOV AI, GUO YS, CHANG WC. Elucidating the reaction pathway of decarboxylation-assisted olefination catalyzed by a mononuclear non-heme iron enzyme[J]. Journal of the American Chemical Society, 2018, 140(45):15190-15193.
[30] ZHU J, LIPPA GM, GULICK AM, TIPTON PA. Examining reaction specificity in PvcB, a source of diversity in isonitrile-containing natural products[J]. Biochemistry, 2015, 54(16):2659-2669.
[31] SIMMONS JM, MÜLLER TA, HAUSINGER RP. FeII/α-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism[J]. Dalton Transactions, 2008, (38):5132-5142.
[32] MICALLEF ML, SHARMA D, BUNN BM, GERWICK L, VISWANATHAN R, MOFFITT MC. Comparative analysis of hapalindole, ambiguine and welwitindolinone gene clusters and reconstitution of indole-isonitrile biosynthesis from cyanobacteria[J]. BMC Microbiology, 2014, 14:213.