不同碳源诱导下牦牛瘤胃厌氧真菌Orpinomyces sp. YF3的产酶机制
作者:
基金项目:

国家自然科学基金(31972592,31402102);陕西省重点研发计划(2021NY-019)


Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究体外发酵牦牛瘤胃源厌氧真菌Orpinomyces sp. YF3在不同碳源诱导下的产酶机制,本研究利用厌氧培养管在10 mL基础培养基中分别添加不同碳源复杂度的葡萄糖(glucose, Glu)、滤纸(filter paper, Flp)、微晶纤维素(avicel, Avi)各8 g/L作为唯一碳源进行体外发酵,检测发酵液中的纤维降解酶活性和挥发性脂肪酸,并利用转录组学探究Orpinomyces sp. YF3的产酶机制。结果表明葡萄糖诱导下的发酵液中羧甲基纤维素酶、微晶纤维素酶、滤纸酶和木聚糖酶的活性,及乙酸的比例显著升高(P<0.05),丙酸、丁酸、异丁酸的比例显著降低(P<0.05)。进一步分析发现与纤维降解酶相关的差异表达基因(differentially expressed genes, DEGs)在Glu组中显著上调。基因本体论(gene ontology, GO)功能富集显示DEGs主要集中在木聚糖酶、纤维素酶、葡萄糖和碳水化合物等的分解代谢过程及相关酶活性,京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路分析富集到的纤维降解酶相关的差异通路主要是淀粉和蔗糖代谢途径、其他聚糖降解途径。以上结果表明,以葡萄糖为碳源底物的Orpinomyces sp. YF3可增加纤维素降解酶活性,提高乙酸比例,通过调控纤维降解酶基因的表达及相关代谢通路来提高对底物的降解能力,提高能量利用效率。这为Orpinomyces sp. YF3在实际生产中的应用提供了理论基础。

    Abstract:

    In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P<0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P<0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, b-glucan metabolic process, cellulase activity, endo-1,4-b-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.

    参考文献
    [1] MORGAVI DP, KELLY WJ, JANSSEN PH, ATTWOOD GT. Rumen microbial (meta) genomics and its application to ruminant production[J]. Animal, 2013, 7: 184-201.
    [2] FERDEȘ M, DINCĂ MN, MOICEANU G, ZĂBAVĂ BȘ, PARASCHIV G. Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: a review[J]. Sustainability, 2020, 12(17): 7205.
    [3] JAMI E, ISRAEL A, KOTSER A, MIZRAHI I. Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7(6): 1069-1079.
    [4] PAUL SS, KAMRA DN, SASTRY VRB. Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants[J]. Archives of Animal Nutrition, 2010, 64(4): 279-292.
    [5] MA J, ZHU YX, WANG ZS, YU X, HU R, WANG XY, CAO G, ZOU HW, SHAH AM, PENG QH, XUE B, WANG LZ, ZHAO SN, KONG XY. Comparing the bacterial community in the gastrointestinal tracts between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau[J]. Frontiers in Microbiology, 2020, 11: 600516.
    [6] LIAO YP, HU R, WANG ZS, PENG QH, DONG XW, ZHANG XF, ZOU HW, PU QJ, XUE B, WANG LZ. Metabolomics profiling of serum and urine in three beef cattle breeds revealed different levels of tolerance to heat stress[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6926-6935.
    [7] DAI QD, MA J, CAO G, HU R, ZHU YX, LI GY, ZOU HW, WANG ZS, PENG QH, XUE B, WANG LZ. Comparative study of growth performance, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks raised by stall-feeding[J]. AMB Express, 2021, 11(1): 1-11.
    [8] EDWARDS JE, FORSTER RJ, CALLAGHAN TM, DOLLHOFER V, DAGAR SS, CHENG YF, CHANG J, KITTELMANN S, FLIEGEROVA K, PUNIYA AK, HENSKE JK, GILMORE SP, O’MALLEY MA, GRIFFITH GW, SMIDT H. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities[J]. Frontiers in Microbiology, 2017, 8: 1657.
    [9] WILLIAMS AG, ORPIN CG. Polysaccharide- degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates[J]. Canadian Journal of Microbiology, 1987, 33(5): 418-426.
    [10] STEENBAKKERS PJM, HARHANGI HR, BOSSCHER MW, van der HOOFT MMC, KELTJENS JT, van der DRIFT C, VOGELS GD, den CAMP HJMO. Beta-glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase[J]. Biochemical Journal, 2003, 370(3): 963-970.
    [11] HESS M, PAUL SS, PUNIYA AK, van der GIEZEN M, SHAW C, EDWARDS JE, FLIEGEROVÁ K. Anaerobic fungi: past, present, and future[J]. Frontiers in Microbiology, 2020, 11: 584893.
    [12] MORAÏS S, MIZRAHI I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiology Reviews, 2019, 43(4): 362-379.
    [13] LEE SM, GUAN LL, EUN JS, KIM CH, LEE SJ, KIM ET, LEE SS. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages[J]. Journal of Applied Microbiology, 2015, 118(3): 565-573.
    [14] AYDIN S, YILDIRIM E, INCE O, INCE B. Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass[J]. Algal Research, 2017, 23: 150-160.
    [15] YILDIRIM E, INCE O, AYDIN S, INCE B. Improvement of biogas potential of anaerobic digesters using rumen fungi[J]. Renewable Energy, 2017, 109(8): 346-353.
    [16] 曹阳春. 牦牛瘤胃厌氧真菌多样性与饲料细胞壁降解酯酶特性研究[D]. 北京: 中国农业大学博士学位论文, 2012. CAO YC. Study on the diversity of anaerobic fungi in yak rumen and characteristics of esterase degradation in feed cytoderm[D]. Beijing: Doctoral Dissertation of China Agricultural University, 2012(in Chinese).
    [17] ZHAO XH, ZHANG T, XU M, YAO JH. Effects of physically effective fiber on chewing activity, ruminal fermentation, and digestibility in goats1[J]. Journal of Animal Science, 2011, 89(2): 501-509.
    [18] THOMAS M, WEBB M, GHIMIRE S, BLAIR A, OLSON K, FENSKE GJ, FONDER AT, CHRISTOPHER-HENNINGS J, BRAKE D, SCARIA J. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle[J]. Scientific Reports, 2017, 7(1): 12257.
    [19] BENSADOUN A, PALADINES OL, REID JT. Effect of level of intake and physical form of the diet on plasma glucose concentration and volatile fatty acid absorption in ruminants[J]. Journal of Dairy Science, 1962, 45(10): 1203-1210.
    [20] 罗治杰, 马露, 卜登攀, 秦霞. 瘤胃发酵产物乙酸和丙酸比对奶牛生产性能及乳成分影响的荟萃分析[J]. 中国畜牧兽医, 2021, 48(5): 1613-1624. LUO ZJ, MA L, BU DP, QIN X. Meta-analysis: how the ruminal acetic acid to propionic acid ratio affect the production and milk composition of dairy cow[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(5): 1613-1624(in Chinese).
    [21] LEVASSEUR A, DRULA E, LOMBARD V, COUTINHO PM, HENRISSAT B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes[J]. Biotechnology for Biofuels, 2013, 6(1): 1-14.
    [22] CHETTRI D, VERMA AK, VERMA AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications[J]. Biotechnology Reports, 2020, 28: e00525.
    [23] SOLOMON KV, HAITJEMA CH, HENSKE JK, GILMORE SP, BORGES-RIVERA D, LIPZEN A, BREWER HM, PURVINE SO, WRIGHT AT, THEODOROU MK, GRIGORIEV IV, REGEV A, THOMPSON DA, O’MALLEY MA. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes[J]. Science, 2016, 351(6278): 1192-1195.
    [24] KUCHARSKA K, RYBARCZYK P, HOŁOWACZ I, ŁUKAJTIS R, GLINKA M, KAMIŃSKI M. Molecules pretreatment of lignocellulosic materials as substrates for fermentation processes[J]. Molecules, 2018, 23(11): 2937.
    [25] COUGER MB, YOUSSEF NH, STRUCHTEMEYER CG, LIGGENSTOFFER AS, ELSHAHED MS. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A[J]. Biotechnology for Biofuels, 2015, 8(1): 1-17.
    [26] GRUNINGER RJ, NGUYEN TTM, REID ID, YANKE JL, WANG P, ABBOTT DW, TSANG A, MCALLISTER T. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates[J]. Frontiers in Microbiology, 2018, 9: 1581.
    [27] NISIZAWA T, SUZUKI H, NISIZAWA K. Catabolite repression of cellulase formation in Trichoderma viride[J]. The Journal of Biochemistry, 1972, 71(6): 999-1007.
    [28] BARICHIEVICH EM, CALZA RE. Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188[J]. Applied and Environmental Microbiology, 1990, 56(1): 43-48.
    [29] AMORE A, GIACOBBE S, FARACO V. Regulation of cellulase and hemicellulase gene expression in fungi[J]. Current Genomics, 2013, 14(4): 230-249.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜雪儿,周琳琳,张帆,李永,赵聪聪,王腊梅,姚军虎,曹阳春. 不同碳源诱导下牦牛瘤胃厌氧真菌Orpinomyces sp. YF3的产酶机制[J]. 生物工程学报, 2023, 39(12): 4927-4938

复制
分享
文章指标
  • 点击次数:203
  • 下载次数: 845
  • HTML阅读次数: 697
  • 引用次数: 0
历史
  • 收稿日期:2023-03-05
  • 录用日期:2023-05-15
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第6767171位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司