家蚕BmAKR基因家族的鉴定及在蚕卵中的表达分析
作者:
基金项目:

国家重点研发计划(2022YFD1201600);国家自然科学基金(31872429);重庆市自然科学基金(cstc2021jcyj-msxmX1166)


Genome-wide identification of the BmAKR gene family in the silkworm (Bombyx mori) and their expression analysis in diapause eggs and nondiapause eggs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    醛酮还原酶超家族(aldo-keto reductase super family, AKRs)具有广泛的底物特异性,目前尚未见对昆虫AKR基因家族成员的系统鉴定报道。本研究采用生物信息学手段,预测了家蚕(Bombyx mori) AKR基因的系统进化、理化性质、染色体定位、保守基序和基因结构,通过转录组数据和实时荧光定量聚合酶链式反应(quantitative real time polymerase chain reaction, qRT-PCR)分析了不同组织时期及不同发育状态蚕卵中BmAKR基因的表达水平,并采用Western blotting检测了蚕卵中该蛋白的表达量。本研究共鉴定出11个BmAKR基因,分布在4条不同的染色体上,都具有AKR家族特有的(α/β) 8桶保守结构,理化特征较为相似;系统进化分析显示,其可分为2个家族(AKR1AKR2)。转录组数据分析显示,家族成员基因在不同组织时期中的表达差异较大。进一步分析发现,一部分BmAKR基因在非滞育卵的表达量显著高于滞育卵;但BmAKR1-1在滞育卵中的表达量却显著高于非滞育卵。蛋白水平的检测发现BmAKR1-1在滞育卵和非滞育卵的差异变化趋势与qRT-PCR结果一致。综上所述,本研究通过对家蚕BmAKR家族的鉴定和分析,筛选出BmAKR1-1等作为调控蚕卵发育的候选基因,以便后期对其进行深入研究。

    Abstract:

    The aldo-keto reductase super family (AKRs) has a wide range of substrate specificity. However, the systematic identification of insect AKR gene family members has not been reported. In this study, bioinformatics methods were used to predict the phylogenetic evolution, physical and chemical properties, chromosome location, conserved motifs, and gene structure of AKR family members in Bombyx mori (BmAKR). Transcriptome data or quantitative real time polymerase chain reaction (qRT-PCR) were used to analyze the expression level of BmAKR genes during different organizational periods and silkworm eggs in different developmental states. Moreover, Western blotting was used to detect the expression level of the BmAKR in silkworm eggs. The results showed that 11 BmAKR genes were identified. These genes were distributed on 4 chromosomes of the silkworm genome, all of which had the (α/β) 8-barrel motif, and their physical and chemical characteristics were relatively similar. Phylogenetic analysis showed that the BmAKR genes could be divided into 2 subgroups (AKR1 and AKR2). Transcriptome data analysis showed that the expression of BmAKR genes were quite different in different tissues and periods. Moreover, the expression analysis of BmAKR genes in silkworm eggs showed that some genes were expressed significantly higher in nondiapause eggs than in diapause eggs; but another gene, BmAKR1-1, was expressed significantly higher in diapause eggs than in nondiapause eggs. The detection of protein level found that the difference trend of BmAKR1-1 in diapause eggs and non-diapause eggs was consistent with the results of qRT-PCR. In conclusion, BmAKR1-1 was screened out as candidates through the identification and analysis of the BmAKR genes in silkworm, which may regulate silkworm egg development is worthy of further investigation.

    参考文献
    [1] PENNING TM. The aldo-keto reductases (AKRs): overview[J]. Chemico-Biological Interactions, 2015, 234: 236-246.
    [2] JEZ JM, BENNETT MJ, SCHLEGEL BP, LEWIS M, PENNING TM. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochemical Journal, 1997, 326(3): 625-636.
    [3] JIN Y, PENNING TM. Aldo-keto reductases and bioactivation/detoxication[J]. Annual Review of Pharmacology and Toxicology, 2007, 47: 263-292.
    [4] HYNDMAN D, BAUMAN DR, HEREDIA VV, PENNING TM. The aldo-keto reductase superfamily homepage[J]. Chemico-Biological Interactions, 2003, 143/144: 621-631.
    [5] PENNING TM, STECKELBROECK S, BAUMAN DR, MILLER MW, JIN Y, PEEHL DM, FUNG KM, LIN HK. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors[J]. Molecular and Cellular Endocrinology, 2006, 248(1/2): 182-191.
    [6] TANG WH, MARTIN KA, HWA J. Aldose reductase, oxidative stress, and diabetic mellitus[J]. Frontiers in Pharmacology, 2012, 3: 87.
    [7] QU JY, LI J, ZHANG YM, HE RZ, LIU XT, GONG K, DUAN LL, LUO WH, HU Z, WANG GS, XIA CL, LUO DX. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway[J]. Cell & Bioscience, 2021, 11(1): 1-13.
    [8] KANAYAMA Y, MIZUTANI R, YAGUCHI S, HOJO A, IKEDA H, NISHIYAMA M, KANAHAMA K. Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance[J]. Phytochemistry, 2014, 104: 30-36.
    [9] KUMAR D, SINGH P, YUSUF MA, UPADHYAYA CP, DEB ROY S, HOHN T, SARIN NB. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage[J]. Molecular Biotechnology, 2013, 54(2): 292-303.
    [10] KOSTÁL V, TOLLAROVÁ M, SULA J. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus[J]. Journal of Insect Physiology, 2004, 50(4): 303-313.
    [11] PODRABSKY JE, HAND SC. Physiological strategies during animal diapause: lessons from brine shrimp and annual killifish[J]. Journal of Experimental Biology, 2015, 218(12): 1897-1906.
    [12] FIELENBACH N, ANTEBI A. C. elegans dauer formation and the molecular basis of plasticity[J]. Genes & Development, 2008, 22(16): 2149-2165.
    [13] ZHANG XS, WANG T, LIN XW, DENLINGER DL, XU WH. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): E7832-E7840.
    [14] SCHNEIDER C, KING RM, PHILIPSON L. Genes specifically expressed at growth arrest of mammalian cells[J]. Cell, 1988, 54(6): 787-793.
    [15] YAMAHAMA Y, SENO K, HARIYAMA T. Changes in lipid droplet localization during embryogenesis of the silkworm, Bombyx mori[J]. Zoological Science, 2008, 25(6): 580-586.
    [16] MISTRY J, CHUGURANSKY S, WILLIAMS L, QURESHI M, SALAZAR GA, SONNHAMMER ELL, TOSATTO SCE, PALADIN L, RAJ S, RICHARDSON LJ, FINN RD, BATEMAN A. Pfam: the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(D1): D412-D419.
    [17] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
    [18] LU F, WEI ZY, LUO YJ, GUO HL, ZHANG GQ, XIA QY, WANG Y. SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm[J]. Nucleic Acids Research, 2020, 48(D1): D749-D755.
    [19] MARCHLER-BAUER A, ANDERSON JB, CHERUKURI PF, DEWEESE-SCOTT C, GEER LY, GWADZ M, HE SQ, HURWITZ DI, JACKSON JD, KE ZX, LANCZYCKI CJ, LIEBERT CA, LIU CL, LU F, MARCHLER GH, MULLOKANDOV M, SHOEMAKER BA, SIMONYAN V, SONG JS, THIESSEN PA, et al. CDD: a conserved domain database for protein classification[J]. Nucleic Acids Research, 2005, 33(database issue): D192-D196.
    [20] GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS MR, APPEL RD, BAIROCH A. Protein identification and analysis tools on the ExPASy server[M]//The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005: 571-607.
    [21] HAEUSSLER M, ZWEIG AS, TYNER C, SPEIR ML, ROSENBLOOM KR, RANEY BJ, LEE CM, LEE BT, HINRICHS AS, GONZALEZ JN, GIBSON D, DIEKHANS M, CLAWSON H, CASPER J, BARBER GP, HAUSSLER D, KUHN RM, KENT WJ. The UCSC genome browser database: 2019 update[J]. Nucleic Acids Research, 2019, 47(D1): D853-D858.
    [22] CHAO JT, KONG YZ, WANG Q, SUN YH, GONG DP, LV J, LIU GS. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages[J]. Yi Chuan, 2015, 37(1): 91-97.
    [23] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [24] WATERHOUSE AM, PROCTER JB, MARTIN DMA, CLAMP M, BARTON GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9): 1189-1191.
    [25] YANG MZ, DERBYSHIRE MK, YAMASHITA RA, MARCHLER-BAUER A. NCBI’s conserved domain database and tools for protein domain analysis[J]. Current Protocols in Bioinformatics, 2020, 69(1): e90.
    [26] BAILEY TL, BODEN M, BUSKE FA, FRITH M, GRANT CE, CLEMENTI L, REN JY, LI WW, NOBLE WS. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(suppl_2): W202-W208.
    [27] HU B, JIN JP, GUO AY, ZHANG H, LUO JC, GAO G. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
    [28] WANG GH, XIA QY, CHENG DJ, DUAN J, ZHAO P, CHEN J, ZHU L. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR[J]. Insect Science, 2008, 15(5): 405-413.
    [29] GONG J, TIAN S, ZHOU X, YANG H, ZHU Y, HOU Y. Transcriptional response of silkworm (Bombyx mori) eggs to O2 or HCl treatment[J]. International Journal of Molecular Sciences, 2016, 17(12): 1838.
    [30] BARSKI OA, TIPPARAJU SM, BHATNAGAR A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification[J]. Drug Metabolism Reviews, 2008, 40(4): 553-624.
    [31] YAMAMOTO K, ENDO S. Novel aldo-keto reductase AKR2E9 regulates aldehyde content in the midgut and antennae of the silkworm (Bombyx mori)[J]. Archives of Insect Biochemistry and Physiology, 2023, 112(1): e21979.
    [32] YAMAMOTO K, YAMAGUCHI M, ENDO S. Functional characterization of an aldose reductase (bmALD1) obtained from the silkworm Bombyx mori[J]. Insect Molecular Biology, 2020, 29(5): 490-497.
    [33] 陈艳荣, 朱娟, 蒋涛, 谭志承, 陈艳花, 唐顺明, 沈兴家. 一个二化性家蚕醛酮还原酶基因的克隆及序列与表达分析[J]. 蚕业科学, 2019, 45(2): 187-194. CHEN YR, ZHU J, JIANG T, TAN ZC, CHEN YH, TANG SM, SHEN XJ. Cloning, sequence feature and expression pattern of an aldo-keto reductase gene from bivoltine silkworm, Bombyx mori[J]. Science of sericulture, 2019, 45(2): 187-194(in Chinese).
    [34] YAMAMOTO K, WILSON DK. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori[J]. Archives of Biochemistry and Biophysics, 2013, 538(2): 156-163.
    [35] YAMAMOTO K, OZAKIYA Y, UNO T. Localization of an aldo-keto reductase (AKR2E4) in the silkworm Bombyx mori (Lepidoptera: Bombycidae)[J]. Journal of Insect Science, 2017, 17(5): 94.
    [36] WANG CF, ZHANG Z, SUN W. Ecdysone oxidase and 3-dehydroecdysone-3β-reductase contribute to the synthesis of ecdysone during early embryonic development of the silkworm[J]. International Journal of Biological Sciences, 2018, 14(11): 1472-1482.
    [37] SINGH M, KAPOOR A, BHATNAGAR A. Physiological and pathological roles of aldose reductase[J]. Metabolites, 2021, 11(10): 655.
    [38] CHINO H. Conversion of glycogen to sorbitol and glycerol in the diapause egg of the Bombyx silkworm[J]. Nature, 1957, 180(4586): 606-607.
    [39] WANG PY, BI SM, WEI WY, QIU ZY, XIA DG, SHEN XJ, ZHAO QL. Downregulation of aldose reductase is responsible for developmental abnormalities of the silkworm purple quail-like mutant (Q-L(P))[J]. Gene, 2018, 665: 96-104.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龚竞,张伟,王清浪,朱子健,庞家欣,侯勇. 家蚕BmAKR基因家族的鉴定及在蚕卵中的表达分析[J]. 生物工程学报, 2023, 39(12): 4982-4995

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 1009
  • HTML阅读次数: 509
  • 引用次数: 0
历史
  • 收稿日期:2023-02-14
  • 录用日期:2023-05-23
  • 在线发布日期: 2023-12-07
  • 出版日期: 2023-12-25
文章二维码
您是第6515123位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司