单克隆抗体的研究进展及上市药物分析
作者:
基金项目:

国家自然科学基金(32370992)


Advances of monoclonal antibodies and analysis of marketed antibody drugs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来全球各地新冠、猴痘、流感等疫情频发,新增各类肿瘤患者数量呈不断上升趋势,传统药物对新发突发传染病、肿瘤、自身免疫病等的作用有限。随着杂交瘤技术的出现,单克隆抗体的应用日趋广泛,抗体药物在现代医学中发挥着越来越重要的作用。单克隆抗体经历了鼠源抗体、人鼠嵌合抗体、人源化抗体、全人源抗体的发展阶段,其免疫原性逐渐下降,用于人体的安全性逐渐上升。全人源抗体由于其序列均来自于人,不会产生人抗鼠抗体反应,成为了目前最安全的抗体形式。随着基因工程技术的发展,流式细胞术结合单个B细胞基因扩增技术使全人源单克隆抗体的构建和筛选更为容易,抗体药物的发展迎来新一波高潮,单克隆抗体药物的市场将会进一步扩展。本文综述了单克隆抗体的研究进展以及截至2023年10月1日美国食品药品监督管理局(Food and Drug Administration, FDA)批准的163种单抗药物,为国内单克隆抗体的研发及生产提供新的思路。

    Abstract:

    In recent years, there has been a frequent occurrence of various epidemics worldwide such as COVID-19, monkeypox, influenza, and others additionally, there has been an increase in the number of new patients diagnosed with various types of tumors. Traditional drugs have limited effectiveness against emerging infectious diseases, tumors, and autoimmune diseases. However, with the emergence of hybridoma technology, monoclonal antibodies have achieved extensive applications and antibody drugs are playing an important role in modern medicine. Monoclonal antibodies have undergone various development stages, starting from mouse-derived antibodies to human-mouse chimeric antibodies, humanized antibodies, and ultimately human antibodies. Throughout this process, their immunogenicity has gradually decreased, while their safety for human use steadily increased. Fully human antibodies are currently the safest form of antibody, because their sequences all come from human sources and they do not induce human anti-murine antibody reactions. With the advance of genetic engineering technology, flow cytometry coupled to single B cell gene amplification technology has made it easier to construct and screen for fully human monoclonal antibodies. The development of antibody drugs has provided new opportunities, and the market for monoclonal antibody drugs will further expand. This article reviews the research progress of monoclonal antibodies and presents information on the 163 monoclonal antibody drugs approved by the United States Food and Drug Administration (FDA) as of Oct 1st, 2023. The aim is to offer new insights for the development and production of monoclonal antibodies in China.

    参考文献
    [1] KÖHLER G, MILSTEIN C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256(5517): 495-497.
    [2] SMITH SL. Ten years of Orthoclone OKT3 (muromonab-CD3): a review[J]. Journal of Transplant Coordination: Official Publication of the North American Transplant Coordinators Organization (NATCO), 1996, 6(3): 109-121.
    [3] WILDE MI, GOA KL. Muromonab CD3: a reappraisal of its pharmacology and use as prophylaxis of solid organ transplant rejection[J]. Drugs, 1996, 51(5): 865-894.
    [4] HUGHES D. Therapeutic antibodies make a comeback[J]. Drug Discovery Today, 1998, 3(10): 439-442.
    [5] BAYER V. An overview of monoclonal antibodies[J]. Seminars in Oncology Nursing, 2019, 35(5): 150927.
    [6] GOPAL AK, PRESS OW. Clinical applications of anti-CD20 antibodies[J]. The Journal of Laboratory and Clinical Medicine, 1999, 134(5): 445-450.
    [7] BUSS NA, HENDERSON SJ, McFARLANE M, SHENTON JM, de HAAN L. Monoclonal antibody therapeutics: history and future[J]. Current Opinion in Pharmacology, 2012, 12(5): 615-622.
    [8] AKKINA R. Humanized mice for studying human immune responses and generating human monoclonal antibodies[J]. Microbiology Spectrum, 2014, 2(2).
    [9] GOROVITS B, KOREN E. Immunogenicity of chimeric antigen receptor T-cell therapeutics[J]. BioDrugs, 2019, 33(3): 275-284.
    [10] HASHIMOTO Y, TADA M, IIDA M, NAGASE S, HATA T, WATARI A, OKADA Y, DOI T, FUKASAWA M, YAGI K, KONDOH M. Generation and characterization of a human-mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model[J]. Biochemical and Biophysical Research Communications, 2016, 477(1): 91-95.
    [11] WOLLINA U, TCHERNEV G, LOTTI T. Chimeric monoclonal antibody cetuximab targeting epidermal growth factor-receptor in advanced non-melanoma skin cancer[J]. Open Access Macedonian Journal of Medical Sciences, 2017, 6(1): 152-155.
    [12] GUO H, CHEN H, ZHU Q, YU XY, RONG R, MERUGU SB, MANGUKIYA HB, LI DW. A humanized monoclonal antibody targeting secreted anterior gradient 2 effectively inhibits the xenograft tumor growth[J]. Biochemical and Biophysical Research Communications, 2016, 475(1): 57-63.
    [13] ROH J, BYUN SJ, SEO Y, KIM M, LEE JH, KIM S, LEE Y, LEE KW, KIM JK, KWON MH. Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting[J]. Molecular Immunology, 2015, 63(2): 513-520.
    [14] NORN CH, LAPIDOTH G, FLEISHMAN SJ. High-accuracy modeling of antibody structures by a search for minimum-energy recombination of backbone fragments[J]. Proteins, 2017, 85(1): 30-38.
    [15] SAFDARI Y, FARAJNIA S, ASGHARZADEH M, KHALILI M. Antibody humanization methods-a review and update[J]. Biotechnology & Genetic Engineering Reviews, 2013, 29: 175-186.
    [16] KAMIMURA N, WOLF AM, IWAI Y. Development of cancer immunotherapy targeting the PD-1 pathway[J]. Journal of Nippon Medical School, 2019, 86(1): 10-14.
    [17] ITOH K, REIS AH, HAYHURST A, SOKOL SY. Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries[J]. PLoS One, 2019, 14(5): e0216083.
    [18] CHAN CEZ, LIM APC, MacARY PA, HANSON BJ. The role of phage display in therapeutic antibody discovery[J]. International Immunology, 2014, 26(12): 649-657.
    [19] GUTHMILLER JJ, DUGAN HL, NEU KE, LAN LYL, WILSON PC. An efficient method to generate monoclonal antibodies from human B cells[J]. Methods in Molecular Biology, 2019, 1904: 109-145.
    [20] van LENT J, BREUKERS J, VEN K, AMPOFO L, HORTA S, POLLET F, IMBRECHTS M, GEUKENS N, VANHOORELBEKE K, DECLERCK P, LAMMERTYN J. Miniaturized single-cell technologies for monoclonal antibody discovery[J]. Lab on a Chip, 2021, 21(19): 3627-3654.
    [21] MURUGAN R, IMKELLER K, BUSSE CE, WARDEMANN H. Direct high-throughput amplification and sequencing of immunoglobulin genes from single human B cells[J]. European Journal of Immunology, 2015, 45(9): 2698-2700.
    [22] BRÜGGEMANN M, OSBORN MJ, MA B, HAYRE J, AVIS S, LUNDSTROM B, BUELOW R. Human antibody production in transgenic animals[J]. Archivum Immunologiae et Therapiae Experimentalis, 2015, 63(2): 101-108.
    [23] LONBERG N, TAYLOR LD, HARDING FA, TROUNSTINE M, HIGGINS KM, SCHRAMM SR, KUO CC, MASHAYEKH R, WYMORE K, McCABE JG, MUNOZ-O’REGAN D, O’DONNELL SL, LAPACHET ESG, BENGOECHEA T, FISHWILD DM, CARMACK CE, KAY RM, HUSZAR D. Antigen-specific human antibodies from mice comprising four distinct genetic modifications[J]. Nature, 1994, 368: 856-859.
    [24] MURPHY AJ, MACDONALD LE, STEVENS S, KAROW M, DORE AT, POBURSKY K, HUANG TT, POUEYMIROU WT, ESAU L, MEOLA M, MIKULKA W, KRUEGER P, FAIRHURST J, VALENZUELA DM, PAPADOPOULOS N, YANCOPOULOS GD. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5153-5158.
    [25] BRÜGGEMANN M, CASKEY HM, TEALE C, WALDMANN H, WILLIAMS GT, SURANI MA, NEUBERGER MS. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(17): 6709-6713.
    [26] TAYLOR LD, CARMACK CE, SCHRAMM SR, MASHAYEKH R, HIGGINS KM, KUO CC, WOODHOUSE C, KAY RM, LONBERG N. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins[J]. Nucleic Acids Research, 1992, 20(23): 6287-6295.
    [27] SMITH GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315-1317.
    [28] McCAFFERTY J, GRIFFITHS AD, WINTER G, CHISWELL DJ. Phage antibodies: filamentous phage displaying antibody variable domains[J]. Nature, 1990, 348: 552-554.
    [29] SHEETS MD, AMERSDORFER P, FINNERN R, SARGENT P, LINDQUIST E, SCHIER R, HEMINGSEN G, WONG C, GERHART JC, MARKS JD. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6157-6162.
    [30] LU RM, CHANG YL, CHEN MS, WU HC. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery[J]. Biomaterials, 2011, 32(12): 3265-3274.
    [31] LIM CC, WOO PCY, LIM TS. Development of a phage display panning strategy utilizing crude antigens: isolation of MERS-CoV nucleoprotein human antibodies[J]. Scientific Reports, 2019, 9: 6088.
    [32] KEMPENI J. Preliminary results of early clinical trials with the fully human anti-TNF alpha monoclonal antibody D2E7[J]. Annals of the Rheumatic Diseases, 1999, 58(suppl 1): I70-I72.
    [33] KÜPPERS R, ZHAO M, HANSMANN ML, RAJEWSKY K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections[J]. The EMBO Journal, 1993, 12(13): 4955-4967.
    [34] SMITH K, GARMAN L, WRAMMERT J, ZHENG NY, CAPRA JD, AHMED R, WILSON PC. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen[J]. Nature Protocols, 2009, 4: 372-384.
    [35] OBIAKOR H, SEHGAL D, DASSO JF, BONNER RF, MALEKAFZALI A, MAGE RG. A comparison of hydraulic and laser capture microdissection methods for collection of single B cells, PCR, and sequencing of antibody VDJ[J]. Analytical Biochemistry, 2002, 306(1): 55-62.
    [36] TILLER T, MEFFRE E, YURASOV S, TSUIJI M, NUSSENZWEIG MC, WARDEMANN H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning[J]. Journal of Immunological Methods, 2008, 329(1/2): 112-124.
    [37] LAGERKVIST AC, FUREBRING C, BORREBAECK CA. Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning[J]. BioTechniques, 1995, 18(5): 862-869.
    [38] BATTYE FL, LIGHT A, TARLINTON DM. Single cell sorting and cloning[J]. Journal of Immunological Methods, 2000, 243(1/2): 25-32.
    [39] SCHEID JF, MOUQUET H, FELDHAHN N, WALKER BD, PEREYRA F, CUTRELL E, SEAMAN MS, MASCOLA JR, WYATT RT, WARDEMANN H, NUSSENZWEIG MC. A method for identification of HIV gp140 binding memory B cells in human blood[J]. Journal of Immunological Methods, 2009, 343(2): 65-67.
    [40] CAO YL, SU B, GUO XH, SUN WJ, DENG YQ, BAO LL, ZHU QY, ZHANG X, ZHENG YH, GENG CY, CHAI XR, HE RS, LI XF, LV Q, ZHU H, DENG W, XU YF, WANG YJ, QIAO LX, TAN YF, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells[J]. Cell, 2020, 182(1): 73-84e16.
    [41] TOWNSEND S, FINLAY WJJ, HEARTY S, O’KENNEDY R. Optimizing recombinant antibody function in SPR immunosensing the influence of antibody structural format and chip surface chemistry on assay sensitivity[J]. Biosensors & Bioelectronics, 2006, 22(2): 268-274.
    [42] PONDÉ N, AFTIMOS P, PICCART M. Antibody-drug conjugates in breast cancer: a comprehensive review[J]. Current Treatment Options in Oncology, 2019, 20(5): 37.
    [43] EGAN PC, REAGAN JL. The return of gemtuzumab ozogamicin: a humanized anti-CD33 monoclonal antibody-drug conjugate for the treatment of newly diagnosed acute myeloid leukemia[J]. OncoTargets and Therapy, 2018, 11: 8265-8272.
    [44] DONG WJ, SHI JY, YUAN T, QI BW, YU JY, DAI JY, HE L. Antibody-drug conjugates of 7-ethyl-10- hydroxycamptothecin: sacituzumab govitecan and labetuzumab govitecan[J]. European Journal of Medicinal Chemistry, 2019, 167: 583-593.
    [45] SCHOONJANS R, WILLEMS A, SCHOONOOGHE S, LEOEN J, GROOTEN J, MERTENS N. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain[J]. Biomolecular Engineering, 2001, 17(6): 193-202.
    [46] LU D, JIMENEZ X, ZHANG HF, BOHLEN P, WITTE L, ZHU ZP. Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments[J]. Journal of Immunological Methods, 2002, 267(2): 213-226.
    [47] NISONOFF A, RIVERS MM. Recombination of a mixture of univalent antibody fragments of different specificity[J]. Archives of Biochemistry and Biophysics, 1961, 93: 460-462.
    [48] BYRNE H, CONROY PJ, WHISSTOCK JC, O’KENNEDY RJ. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications[J]. Trends in Biotechnology, 2013, 31(11): 621-632.
    [49] BOTOSSO VF, JORGE SAC, ASTRAY RM, de SÁ GUIMARÃES AM, MATHOR MB, dos SANTOS de CARNEIRO P, DURIGON EL, COVAS D, de OLIVEIRA DBL, DAS NEVES OLIVEIRA R, MARIA DA, ETO SF, GALLINA NMF, PIDDE G, SQUAIELLA-BAPTISTÃO CC, SILVA DT, VILLAS-BOAS IM, FERNANDES DC, AUADA AVV, BANARI AC, et al. Anti-SARS-CoV-2 equine F (Ab’)2 immunoglobulin as a possible therapy for COVID-19[J]. Scientific Reports, 2022, 12: 3890.
    [50] WOLF E, HOFMEISTER R, KUFER P, SCHLERETH B, BAEUERLE PA. BiTEs: bispecific antibody constructs with unique anti-tumor activity[J]. Drug Discovery Today, 2005, 10(18): 1237-1244.
    [51] ALEXANDER A, STEINMETZ M, BARRITAULT D, FRANGIONE B, FRANKLIN EC, HOOD L, BUXBAUM JN. Gamma heavy chain disease in man: cDNA sequence supports partial gene deletion model[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(10): 3260-3264.
    [52] HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMANS S, ROBINSON G, HAMMERS C, SONGA EB, BENDAHMAN N, HAMMERS R. Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363: 446-448.
    [53] FLAJNIK MF, KASAHARA M. Origin and evolution of the adaptive immune system: genetic events and selective pressures[J]. Nature Reviews Genetics, 2010, 11: 47-59.
    [54] GREENBERG AS, AVILA D, HUGHES M, HUGHES A, McKINNEY EC, FLAJNIK MF. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks[J]. Nature, 1995, 374: 168-173.
    [55] SINGH A, PASHA SK, MANICKAM P, BHANSALI S. Single-domain antibody based thermally stable electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2016, 83: 162-168.
    [56] GONZALEZ-SAPIENZA G, ROSSOTTI MA, ROSA STD. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications[J]. Frontiers in Immunology, 2017, 8: 977.
    [57] TILLIB SV, GORYAINOVA OS, SACHKO AM, IVANOVA TI. High-affinity single-domain antibodies for analyzing human apo- and holo-transferrin[J]. Acta Naturae, 2022, 14(2): 98-102.
    [58] TILLIB SV, GORYAINOVA OS, SACHKO AM, IVANOVA TI, GAAS MY, VOROB’EV NV, KAPRIN AD, SHEGAY PV. Single-domain antibodies used to pretreat the human urinary proteome in cancer biomarker testing[J]. Molecular Biology, 2022, 56(4): 616-627.
    [59] WANG J, MUKHTAR H, MA L, PANG Q, WANG XH. VHH antibodies: reagents for mycotoxin detection in food products[J]. Sensors, 2018, 18(2): 485.
    [60] ZHU Q, HU XD, LIU Y, XIE YJ, XU CX, LIN MM, POOE OJ, ZHONG JF, GAO MJ, LU LN, LIU XJ, ZHANG X. Identification of single domain antibodies with insect cytotoxicity using phage-display antibody library screening and Plutella xylostella ATP-binding cassette transporter subfamily C member 2 (ABCC2)-based insect cell expression system[J]. International Journal of Biological Macromolecules, 2022, 209: 586-596.
    [61] SWOFFORD CA, NORDEEN SA, CHEN L, DESAI MM, CHEN J, SPRINGS SL, SCHWARTZ TU, SINSKEY AJ. Structure and specificity of an anti-chloramphenicol single domain antibody for detection of amphenicol residues[J]. Protein Science: a Publication of the Protein Society, 2022, 31(11): e4457.
    [62] STONE L. Peptidomimetics have potential[J]. Nature Reviews Urology, 2017, 14: 328.
    [63] LIPI F, CHEN SX, CHAKRAVARTHY M, RAKESH S, VEEDU RN. In vitro evolution of chemically-modified nucleic acid aptamers: pros and cons, and comprehensive selection strategies[J]. RNA Biology, 2016, 13(12): 1232-1245.
    [64] ZARE EN, FALLAH Z, LE VT, DOAN VD, MUDHOO A, JOO SW, VASSEGHIAN Y, TAJBAKHSH M, MORADI O, SILLANPÄÄ M, VARMA RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review[J]. Environmental Chemistry Letters, 2022, 20(4): 2629-2664.
    [65] HOBER S, LINDBO S, NILVEBRANT J. Bispecific applications of non-immunoglobulin scaffold binders[J]. Methods, 2019, 154: 143-152.
    [66] van HOECKE L, ROOSE K. How mRNA therapeutics are entering the monoclonal antibody field[J]. Journal of Translational Medicine, 2019, 17(1): 54.
    [67] VÁZQUEZ-MOJENA Y, LEÓN-ARCIA K, GONZÁLEZ-ZALDIVAR Y, RODRÍGUEZ- LABRADA R, VELÁZQUEZ-PÉREZ L. Gene therapy for polyglutamine spinocerebellar ataxias: advances, challenges, and perspectives[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2021, 36(12): 2731-2744.
    [68] LEJMAN J, PANUCIAK K, NOWICKA E, MASTALERCZYK A, WOJCIECHOWSKA K, LEJMAN M. Gene therapy in ALS and SMA: advances, challenges and perspectives[J]. International Journal of Molecular Sciences, 2023, 24(2): 1130.
    [69] McCARTY DM, YOUNG SM Jr, SAMULSKI RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors[J]. Annual Review of Genetics, 2004, 38: 819-845.
    [70] AMISS TJ, McCARTY DM, SKULIMOWSKI A, SAMULSKI RJ. Identification and characterization of an adeno-associated virus integration site in CV-1 cells from the African green monkey[J]. Journal of Virology, 2003, 77(3): 1904-1915.
    [71] KANAPATHIPILLAI M. Treating p53 mutant aggregation-associated cancer[J]. Cancers, 2018, 10(6): 154.
    [72] ZHAO YX, GAN LC, KE DJ, CHEN Q, FU YJ. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy[J]. Journal of Translational Medicine, 2023, 21(1): 693.
    [73] KOBIYAMA K, JOUNAI N, AOSHI T, TOZUKA M, TAKESHITA F, COBAN C, ISHII KJ. Innate immune signaling by, and genetic adjuvants for DNA vaccination[J]. Vaccines, 2013, 1(3): 278-292.
    [74] HOPFNER KP, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nature Reviews Molecular Cell Biology, 2020, 21: 501-521.
    [75] FU YJ, FANG YJ, LIN Z, YANG L, ZHENG LQ, HU H, YU TT, HUANG BT, CHEN SX, WANG HZ, XU S, BAO W, CHEN Q, SUN LJ. Inhibition of cGAS-mediated interferon response facilitates transgene expression[J]. iScience, 2020, 23(4): 101026.
    [76] CORBETT KS, EDWARDS DK, LEIST SR, ABIONA OM, BOYOGLU-BARNUM S, GILLESPIE RA, HIMANSU S, SCHÄFER A, ZIWAWO CT, DiPIAZZA AT, DINNON KH, ELBASHIR SM, SHAW CA, WOODS A, FRITCH EJ, MARTINEZ DR, BOCK KW, MINAI M, NAGATA BM, HUTCHINSON GB, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness[J]. Nature, 2020, 586: 567-571.
    [77] PARDI N, HOGAN MJ, NARADIKIAN MS, PARKHOUSE K, CAIN DW, JONES L, MOODY MA, VERKERKE HP, MYLES A, WILLIS E, LaBRANCHE CC, MONTEFIORI DC, LOBBY JL, SAUNDERS KO, LIAO HX, KORBER BT, SUTHERLAND LL, SCEARCE RM, HRABER PT, TOMBÁCZ I, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses[J]. The Journal of Experimental Medicine, 2018, 215(6): 1571-1588.
    [78] KARIKÓ K, MURAMATSU H, WELSH FA, LUDWIG J, KATO H, AKIRA S, WEISSMAN D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Molecular Therapy, 2008, 16(11): 1833-1840.
    [79] HEINE A, JURANEK S, BROSSART P. Clinical and immunological effects of mRNA vaccines in malignant diseases[J]. Molecular Cancer, 2021, 20(1): 52.
    [80] AUGUST A, ATTARWALA HZ, HIMANSU S, KALIDINDI S, LU S, PAJON R, HAN S, LECERF JM, TOMASSINI JE, HARD M, PTASZEK LM, CROWE JE, ZAKS T. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus[J]. Nature Medicine, 2021, 27: 2224-2233.
    [81] ZHOU X, CHEN Z, BI XL. An update review of biosimilars of adalimumab in psoriasis-bioequivalence and interchangeability[J]. Drug Design, Development and Therapy, 2021, 15: 2987-2998.
    [82] GRILO AL, MANTALARIS A. The increasingly human and profitable monoclonal antibody market[J]. Trends in Biotechnology, 2019, 37(1): 9-16.
    [83] LEONARD E, WASCOVICH M, OSKOUEI S, GURZ P, CARPENTER D. Factors affecting health care provider knowledge and acceptance of biosimilar medicines: a systematic review[J]. Journal of Managed Care & Specialty Pharmacy, 2019, 25(1): 102-112.
    [84] KINCH MS, KRAFT Z, SCHWARTZ T. Monoclonal antibodies: trends in therapeutic success and commercial focus[J]. Drug Discovery Today, 2023, 28(1): 103415.
    [85] DOUGAN M, NIRULA A, AZIZAD M, MOCHERLA B, GOTTLIEB RL, CHEN P, HEBERT C, PERRY R, BOSCIA J, HELLER B, MORRIS J, CRYSTAL C, IGBINADOLOR A, HUHN G, CARDONA J, SHAWA I, KUMAR P, ADAMS AC, van NAARDEN J, CUSTER KL, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19[J]. The New England Journal of Medicine, 2021, 385(15): 1382-1392.
    [86] DOGGRELL SA. Do we need bamlanivimab? Is etesevimab a key to treating Covid-19?[J]. Expert Opinion on Biological Therapy, 2021, 21(11): 1359-1362.
    [87] WIDERA M, WILHELM A, HOEHL S, PALLAS C, KOHMER N, WOLF T, RABENAU HF, CORMAN VM, DROSTEN C, VEHRESCHILD MJGT, GOETSCH U, GOTTSCHALK R, CIESEK S. Limited neutralization of authentic severe acute respiratory syndrome coronavirus 2 variants carrying E484K in vitro[J]. The Journal of Infectious Diseases, 2021, 224(7): 1109-1114.
    [88] ALEXANDER M, KING J, BAJEL A, DOECKE C, FOX P, LINGARATNAM S, MELLOR JD, NICHOLSON L, ROOS I, SAUNDERS T, WILKES J, ZIELINSKI R, BYRNE J, MacMILLAN K, MOLLO A, KIRSA S, GREEN M. Australian consensus guidelines for the safe handling of monoclonal antibodies for cancer treatment by healthcare personnel[J]. Internal Medicine Journal, 2014, 44(10): 1018-1026.
    [89] TANG SS, DONG X, LIU W, QI WL, YE LN, YANG XY, CAO Q, GE XL, ZHOU W. Compare risk factors associated with postoperative infectious complication in Crohn’s disease with and without preoperative infliximab therapy: a cohort study[J]. International Journal of Colorectal Disease, 2020, 35(4): 727-737.
    [90] BITTENCOURT AL, OLIVEIRA PD, BITTENCOURT VG, CARVALHO EM, FARRE L. Adult T-cell leukemia/lymphoma triggered by adalimumab[J]. Journal of Clinical Virology, 2013, 58(2): 494-496.
    [91] Le BLAY P, MOUTERDE G, BARNETCHE T, MOREL J, COMBE B. Short-term risk of total malignancy and nonmelanoma skin cancers with certolizumab and golimumab in patients with rheumatoid arthritis: metaanalysis of randomized controlled trials[J]. The Journal of Rheumatology, 2012, 39(4): 712-715.
    [92] BAMDAD S, BAMDAD M, KHANLARI M, DANESHBOD Y, KHADEMI B. Teratogenic effects of intravitreal injection of bevacizumab in a pregnant rat model[J]. Iranian Journal of Pharmaceutical Research: IJPR, 2017, 16(2): 670-676.
    相似文献
    引证文献
引用本文

顾光磊,方敏. 单克隆抗体的研究进展及上市药物分析[J]. 生物工程学报, 2024, 40(5): 1431-1447

复制
分享
文章指标
  • 点击次数:824
  • 下载次数: 1725
  • HTML阅读次数: 1131
  • 引用次数: 0
历史
  • 收稿日期:2023-11-13
  • 最后修改日期:2024-01-13
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司