熊果苷的生物合成研究进展
作者:
基金项目:

国家自然科学基金(22078011, 22378016, 22238001)


Research progress in biosynthesis of arbutin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    熊果苷是一种氢醌衍生的糖苷化合物,根据糖苷键的构型不同又分为β-熊果苷和α-熊果苷。熊果苷作为安全稳定的美白剂被广泛应用于化妆品领域,同时还具有抗氧化、抗菌、抗炎症、抗肿瘤等药理活性。植物提取法生产熊果苷存在植物生长周期长、提取工艺复杂、产率低等问题,而化学合成法合成熊果苷具有反应条件严苛、立体选择性差、收率低等缺点。近年来,生物合成法因其反应条件简单温和、生产过程经济环保等优势,逐渐成为合成熊果苷的热门研究方向。本文总结了4种熊果苷生物合成方式的最新研究进展,包括植物转化法、酶催化法、全细胞催化法以及微生物发酵法,讨论了这几种生物合成方式的优势与不足,并展望了其未来发展方向。

    Abstract:

    Arbutin, a glycosylated compound of hydroquinone, exists in two forms of β-arbutin and α-arbutin based on the configuration of the glycosidic bond. As a safe and stable whitening agent, arbutin is widely used in cosmetics, and it has antioxidant, antimicrobial, anti-inflammatory, and anti-tumor activities. The production of arbutin by plant extraction faces challenges such as long plant growth periods, complex extraction processes, and low yields. The chemical synthesis of arbutin suffers from harsh reaction conditions, poor stereo-selectivity, and low yields. In recent years, biosynthesis emerges as the most popular method to produce arbutin because of the simple and mild reaction conditions, low costs, and environmental friendliness. This review summarizes the research progress in four biosynthetic strategies for arbutin, including plant conversion, enzyme catalysis, whole-cell catalysis, and microbial fermentation. The advantages and limitations of these biosynthetic strategies are discussed, and future research directions are proposed.

    参考文献
    [1] MIGAS P, KRAUZE-BARANOWSKA M. The significance of arbutin and its derivatives in therapy and cosmetics[J]. Phytochemistry Letters, 2015, 13: 35-40.
    [2] GHASEMI-KASMAN M, YAVARPOUR BALI H, ABDI S. Arbutin as a Natural Soluble Glycosylated Phenol and Usage in Neuroinflammation[M]. Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders. Amsterdam: Elsevier, 2023: 525-539.
    [3] SAEEDI M, KHEZRI K, SEYED ZAKARYAEI A, MOHAMMADAMINI H. A comprehensive review of the therapeutic potential of α-arbutin[J]. Phytotherapy Research: PTR, 2021, 35(8): 4136-4154.
    [4] 刘晓婷, 王鑫璇. 熊果苷的药理作用及机制研究进展[J]. 食品与发酵工业, 2022, 48(2): 309-316. LIU XT, WANG XX. Research progress on the pharmacological action and mechanism of arbutin[J]. Food and Fermentation Industries, 2022, 48(2): 309-316 (in Chinese).
    [5] TAKEBAYASHI J, ISHII R, CHEN JB, MATSUMOTO T, ISHIMI Y, TAI A. Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems[J]. Free Radical Research, 2010, 44(4): 473-478.
    [6] NAHAR L, AL-GROSHI A, KUMAR A, SARKER SD. Arbutin: occurrence in plants, and its potential as an anticancer agent[J]. Molecules, 2022, 27(24): 8786.
    [7] ASENSIO E, VITALES D, PÉREZ I, PERALBA L, VIRUEL J, MONTANER C, VALLÈS J, GARNATJE T, SALES E. Phenolic compounds content and genetic diversity at population level across the natural distribution range of bearberry (Arctostaphylos Uva-ursi, Ericaceae) in the Iberian peninsula[J]. Plants, 2020, 9(9): 1250.
    [8] KAWALIER A. Ueber die Blätter von Arctostaphylos uva ursi[J]. Justus Liebigs Annalen Der Chemie, 1852, 82(2): 241-243.
    [9] STRECKER A. Ueber das Arbutin und seine Verwandlungen[J]. Justus Liebigs Annalen Der Chemie, 1858, 107: 228-234.
    [10] MANNICH C. Ueber Arbutin und seine Synthese[J]. Archiv Der Pharmazie, 1912, 250(1): 547-560.
    [11] TATSUO K, MITSUO T, KIYOKAZU T. Syntheses of Glucosides. I[J]. Yakugaku Zasshi, 1952, 72: 13-16.
    [12] XU KX, XUE MG, LI ZM, YE BC, ZHANG B. Recent progress on feasible strategies for arbutin production[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 914280.
    [13] ZHOU HY, ZHAO J, LI AT, REETZ MT. Chemical and biocatalytic routes to arbutin[J]. Molecules, 2019, 24(18): 3303.
    [14] PAREJO I, VILADOMAT F, BASTIDA J, CODINA C. A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by high-performance liquid chromatography[J]. Phytochemical Analysis: PCA, 2001, 12(5): 336-339.
    [15] 周防震, 郭勇. 生物转化生产熊果苷的研究进展[J]. 安徽农业科学, 2009, 37(26): 12393-12394, 12396. ZHOU FZ, GUO Y. Research progress on the manufacture of arbutin by biotransformation[J]. Journal of Anhui Agricultural Sciences, 2009, 37(26): 12393-12394, 12396 (in Chinese).
    [16] GURI A, DHINGRA V, GIRI CC, SiINGH A, WARD OP, NARASU ML. Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects[J]. Biotechnology Advance, 2001, 19(3): 175-99.
    [17] KITTIPONGPATANA N, MANEERAT P, PATTANAKITKOSOL P, KITTIPONGPATANA O. Effect of some factors on the growth of Capsicum annuum L. cell suspension culture and biotransformation of hydroquinone to arbutin[J]. Chiang Mai University Journal of Natural Sciences, 2007, 6(2): 207-218.
    [18] INOMATA S, YOKOYAMA M, SETO S, YANAGI M. High-level production of arbutin from hydroquinone in suspension cultures of Catharanthus roseus plant cells[J]. Applied Microbiology and Biotechnology, 1991, 36(3): 315-319.
    [19] LUTTERBACH R, STÖCKIGT J. High-yield formation of arbutin from hydroquinone by cell-suspension cultures of Rauwolfia serpentina[J]. Helvetica Chimica Acta, 1992, 75(6): 2009-2011.
    [20] 严春艳, 张章, 于荣敏, 孔令义. 何首乌毛状根生物转化对苯二酚生产熊果苷的研究[J]. 中国中药杂志, 2007, 32(3): 192-195. YAN CY, ZHANG Z, YU RM, KONG LY. Studies on biotransformation of arbutin by 4-hydroxy phenol in hairy root of Polygonum multiflorum[J]. China Journal of Chinese Materia Medica, 2007, 32(3): 192-195 (in Chinese).
    [21] 张章, 陈敏青, 任胜芳, 赵昱, 于荣敏. 转基因西洋参冠瘿组织生物合成熊果苷的研究[J]. 中草药, 2006, 37(5): 759-761. ZHANG Z, CHEN MQ, REN SF, ZHAO Y, YU RM. Biosynthesis of arbutin from crown gall of transgenic Panax quinquefolium[J]. Chinese Traditional and Herbal Drugs, 2006, 37(5): 759-761 (in Chinese).
    [22] TABATA M, IKEDA F, HIRAOKA N, KONOSHIMA M. Glucosylation of phenolic compounds by Datura innoxia suspension cultures[J]. Phytochemistry, 1976, 15(8): 1225-1229.
    [23] YOKOYAMA M, INOMATA S, SETO S, YANAGI M. Effects of sugars on the glucosylation of exogenous hydroquinone by Catharanthus roseus cells in suspension culture[J]. Plant and Cell Physiology, 1990, 31(4): 551-555.
    [24] ZHU XT, TIAN YQ, ZHANG WL, ZHANG T, GUANG CE, MU WM. Recent progress on biological production of α-arbutin[J]. Applied Microbiology and Biotechnology, 2018, 102(19): 8145-8152.
    [25] KITAO S, SEKINE H. α-d-glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(1): 38-42.
    [26] 万月佳, 马江锋, 徐蓉, 贺爱永, 姜岷, 陈可泉, 姜引. 重组大肠杆菌产蔗糖磷酸化酶的酶学性质及其催化合成α-熊果苷[J]. 生物工程学报, 2012, 28(12): 1450-1459. WAN YJ, MA JF, XU R, HE AY, JIANG M, CHEN KQ, JIANG Y. Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of α-arbutin[J]. Chinese Journal of Biotechnology, 2012, 28(12): 1450-1459 (in Chinese).
    [27] 李晓玉, 夏媛媛, 沈微, 杨海泉, 曹钰, 陈献忠. 肠膜明串珠菌蔗糖磷酸化酶的酶学表征及在催化合成α-熊果苷中的应用[J]. 生物工程学报, 2020, 36(8): 1546-1555. LI XY, XIA YY, SHEN W, YANG HQ, CAO Y, CHEN XZ. Characterization of a sucrose phosphorylase from Leuconostoc mesenterides for the synthesis of α-arbutin[J]. Chinese Journal of Biotechnology, 2020, 36(8): 1546-1555 (in Chinese).
    [28] SEO ES, KANG J, LEE JH, KIM GE, KIM GJ, KIM D. Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase[J]. Enzyme and Microbial Technology, 2009, 45(5): 355-360.
    [29] ZHOU X, ZHENG YT, WEI XM, YANG KD, YANG XK, WANG YT, XU LM, DU LQ, HUANG RB. Sucrose isomerase and its mutants from Erwinia rhapontici can synthesise α-arbutin[J]. Protein and Peptide Letters, 2011, 18(10): 1028-1034.
    [30] SEO DH, JUNG JH, HA SJ, CHO HK, JUNG DH, KIM TJ, BAEK NI, YOO SH, PARK CS. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase[J]. Applied Microbiology and Biotechnology, 2012, 94(5): 1189-1197.
    [31] YU SH, WANG YC, TIAN YQ, XU W, BAI YX, ZHANG T, MU WM. Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz[J]. Process Biochemistry, 2018, 68: 93-99.
    [32] NISHIMURA T, KOMETANI T, TAKII H, TERADA Y, OKADA S. Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone[J]. Journal of Fermentation and Bioengineering, 1994, 78(1): 31-36.
    [33] MATHEW S, ADLERCREUTZ P. Regioselective glycosylation of hydroquinone to α-arbutin by cyclodextrin glucanotransferase from Thermoanaerobacter sp.[J]. Biochemical Engineering Journal, 2013, 79: 187-193.
    [34] SATO T, HASEGAWA N, SAITO J, UMEZAWA S, HONDA Y, KINO K, KIRIMURA K. Purification, characterization, and gene identification of an α-glucosyl transfer enzyme, a novel type α-glucosidase from Xanthomonas campestris WU-9701[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 80: 20-27.
    [35] PRODANOVIĆ RM, MILOSAVIĆ NB, SLADIĆ D, VELICKOVIĆ TC, VUJCIĆ Z. Synthesis of hydroquinone-alpha-glucoside by alpha-glucosidase from baker’s yeast[J]. Biotechnology Letters, 2005, 27(8): 551-554.
    [36] KUROSU J, SATO T, YOSHIDA K, TSUGANE T, SHIMURA S, KIRIMURA K, KINO K, USAMI S. Enzymatic synthesis of alpha-arbutin by alpha-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701[J]. Journal of Bioscience and Bioengineering, 2002, 93(3): 328-330.
    [37] WU PH, GIRIDHAR R, WU WT. Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of 托楡潮獴票湯瑭桯敮獡楳猠?潡晭?瑥桳整?慩湳琼椯捩漾愠条畮汤愠湩瑴?瀠牡数捰畬物獣潡牴???栠祩摮爠潧硬祵捣潯畳浹慬牡楴湩孯?崠??丠慨瑹畤牲敯??潩浮浯畮湥楛捊慝琮椠潂湩獯???と?????????つ??ioengineering, 2006, 95(6): 1138-1147.
    [38] YANG CY, FAN WM, ZHANG RJ, SHI JP, Knežević-Jugović Z, ZHANG BG. Study on transglucosylation properties of amylosucrase from Xanthomonas campestris pv. Campestris and its application in the production of α-arbutin[J]. Catalysts, 2019, 9(1): 5.
    [39] LIU CQ, DENG L, ZHANG P, ZHANG SR, XU T, WANG F, TAN TW. Efficient production of α-arbutin by whole-cell biocatalysis using immobilized hydroquinone as a glucosyl acceptor[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 91: 1-7.
    [40] ZHU LJ, JIANG D, ZHOU YY, LU YL, FAN YX, CHEN XL. Batch-feeding whole-cell catalytic synthesis of α-arbutin by amylosucrase from Xanthomonas campestris[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(6): 759-767.
    [41] ZHU LJ, XU M, LU CX, CHEN LY, XU AJ, FANG JY, CHEN HC, LU YL, FAN YX, CHEN XL. Optimization of whole-cell biotransformation for scale-up production of α-arbutin from hydroquinone by the use of recombinant Escherichia coli[J]. AMB Express, 2019, 9(1): 94.
    [42] 周祺, 吕雪芹, 柴雪莹, 刘延峰, 李江华, 堵国成, 刘龙. 枯草芽孢杆菌全细胞催化高效合成α-熊果苷[J]. 食品与发酵工业, 2021, 47(22): 1-7. ZHOU Q, LYU XQ, CHAI XY, LIU YF, LI JH, DU GC, LIU L. Highly efficient synthesis of α-arbutin by whole-cell catalysis of Bacillus subtilis[J]. Food and Fermentation Industries, 2021, 47(22): 1-7 (in Chinese).
    [43] AO JW, PAN XW, WANG Q, ZHANG HW, REN KX, JIANG A, ZHANG X, RAO ZM. Efficient whole-cell biotransformation for α-arbutin production through the engineering of sucrose phosphorylase combined with engineered cell modification[J]. Journal of Agricultural and Food Chemistry, 2023, 71(5): 2438-2445.
    [44] 沈洋, 吕雪芹, 林璐, 李江华, 堵国成, 刘龙. 蔗糖磷酸化酶的半理性设计及生产α-熊果苷的条件优化[J]. 食品与发酵工业, 2020, 46(13): 1-9. SHEN Y, LYU XQ, LIN L, LI JH, DU GC, LIU L. Semi-rational design of sucrose phosphorylase and optimization of conditions for α-arbutin production[J]. Food and Fermentation Industries, 2020, 46(13): 1-9 (in Chinese).
    [45] ZHOU Q, WU YK, DENG JY, LIU YF, LI JH, DU GC, LV XQ, LIU L. Combinatorial metabolic engineering enables high yield production of α-arbutin from sucrose by biocatalysis[J]. Applied Microbiology and Biotechnology, 2023, 107(9): 2897-2910.
    [46] LIU CQ, DENG L, ZHANG P, ZHANG SR, LIU L, XU T, WANG F, TAN TW. Screening of high α-arbutin producing strains and production of α-arbutin by fermentation[J]. World Journal of Microbiology and Biotechnology, 2013, 29(8): 1391-1398.
    [47] LIU CQ, ZHANG P, ZHANG SR, XU T, WANG F, DENG L. Feeding strategies for the enhanced production of α-arbutin in the fed-batch fermentation of Xanthomonas maltophilia BT-112[J]. Bioprocess and Biosystems Engineering, 2014, 37(2): 325-329.
    [48] WEI M, REN Y, LIU CX, LIU RC, ZHANG P, WEI Y, XU T, WANG F, TAN TW, LIU CQ. Fermentation scale up for α-arbutin production by Xanthomonas BT-112[J]. Journal of Biotechnology, 2016, 233: 1-5.
    [49] SHEN XL, WANG J, WANG J, CHEN ZY, YUAN QP, YAN YJ. High-level de novo biosynthesis of arbutin in engineered Escherichia coli[J]. Metabolic Engineering, 2017, 42: 52-58.
    [50] SHANG YZ, WEI WP, ZHANG P, YE BC. Engineering Yarrowia lipolytica for enhanced production of arbutin[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1364-1372.
    [51] WANG SW, FU C, BILAL M, HU HB, WANG W, ZHANG XH. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3[J]. Microbial Cell Factories, 2018, 17(1): 174.
    [52] AN N, ZHOU SB, CHEN X, WANG J, SUN XX, SHEN XL, YUAN QP. High-yield production of β-arbutin by identifying and eliminating byproducts formation[J]. Applied Microbiology and Biotechnology, 2023, 107(20): 6193-6204.
    [53] AN N, XIE C, ZHOU SB, WANG J, SUN XX, YAN YJ, SHEN XL, YUAN QP. Establishing a growth-coupled mechanism for high-yield production of β-arbutin from glycerol in Escherichia coli[J]. Bioresource Technology, 2023, 369: 128491.
    [54] EPPINK MH, BOEREN SA, VERVOORT J, van BERKEL WJ. Purification and properties of 4-hydroxybenzoate 1-hydroxylase(decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604[J]. Journal of Bacteriology, 1997, 179(21): 6680-6687.
    [55] AREND J, WARZECHA H, HEFNER T, STÖCKIGT J. Utilizing genetically engineered bacteria to produce plant-specific glucosides[J]. Biotechnology and Bioengineering, 2001, 76(2): 126-131.
    [56] HEFNER T, AREND J, WARZECHA H, SIEMS K, STÖCKIGT J. Arbutin synthase, a novel member of the NRD1beta glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics[J]. Bioorganic & Medicinal Chemistry, 2002, 10(6): 1731-1741.
    [57] TYO KEJ, AJIKUMAR PK, STEPHANOPOULOS G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression[J]. Nature Biotechnology, 2009, 27: 760-765.
    [58] STRIEDNER G, PFAFFENZELLER I, MARKUS L, NEMECEK S, GRABHERR R, BAYER K. Plasmid-free T7-based Escherichia coli expression systems[J]. Biotechnology and Bioengineering, 2010, 105(4): 786-794.
    [59] ENGLAENDER JA, JONES JA, CRESS BF, KUHLMAN TE, LINHARDT RJ, KOFFAS MAG. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli[J]. ACS Synthetic Biology, 2017, 6(4): 710-720.
    [60] MAIRHOFER J, SCHARL T, MARISCH K, CSERJAN-PUSCHMANN M, STRIEDNER G. Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions[J]. Applied and Environmental Microbiology, 2013, 79(12): 3802-3812.
    [61] WANG JL, NIYOMPANICH S, TAI YS, WANG JY, BAI WQ, MAHIDA P, GAO T, ZHANG KC. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration[J]. Applied and Environmental Microbiology, 2016, 82(24): 7176-7184.
    [62] LIN YH, SHEN XL, YUAN QP, YAN YJ. Microbial
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张雨捷,石曈,王佳,孙新晓,申晓林,袁其朋. 熊果苷的生物合成研究进展[J]. 生物工程学报, 2024, 40(8): 2457-2472

复制
分享
文章指标
  • 点击次数:352
  • 下载次数: 797
  • HTML阅读次数: 511
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 在线发布日期: 2024-08-08
  • 出版日期: 2024-08-25
文章二维码
您是第6031186位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司