细菌纤维素合成酶亚基多样性和纤维结构形成研究进展
作者:
基金项目:

国家自然科学基金(31970104, 31670115);浙江省自然科学基金(LY19C200002)


Research progress in bacterial cellulose synthase subunit diversity and fiber structure formation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌纤维素(bacterial cellulose, BC)是由细菌代谢所产生的葡萄糖聚合物。细菌纤维素合成酶(bacterial cellulose synthase, BCS)是催化BC形成的关键酶。BCS不同种类亚基之间的协同性能够确保BC的胞内形成及胞外分泌。本文主要总结了已报道的BC合成菌株的种类,分析了不同菌株中BCS的区别,并综述了BC合成机制、BCS中亚基之间的相互作用及菌株内自身结构特征对高度有序纤维结构的形成的影响等方面的研究进展。全面了解BC的合成与分泌机制,可为合成生物学技术优化BC合成提供更多策略。

    Abstract:

    Bacterial cellulose (BC) is the glucose polymer produced by bacterial metabolism. The bacterial cellulose synthase (BCS) is the key enzyme for catalyzing the formation of BC. The cooperation between different submits of BCS is necessary for the intracellular formation and extracellular secretion of BC. This review summarized the BC-producing strains and the differences of BCS among different strains. Furthermore, we detailed the BC synthesis mechanism, the interactions between BCS subunits, and the relationship between the structural characteristics of strains and the formation of highly ordered fiber structures. A comprehensive insight into the mechanism of BC synthesis and secretion will supply more strategies for optimizing the BC synthesis via methods of synthetic biology.

    参考文献
    [1] PANDEY A, SINGH MK, SINGH A. Bacterial cellulose: smart biomaterial for biomedical applications[J]. Journal of Materials Research, 2024, 39(1): 2-18.
    [2] GULLO M, La CHINA S, FALCONE PM, GIUDICI P. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6885-6898.
    [3] 王珊珊, 韩永和, 林志蓉, 李敏. 细菌纤维素的生物合成机理、理化性质及应用研究进展[J]. 福建师范大学学报(自然科学版), 2021, 37(3): 1-9. WANG SS, HAN YH, LIN ZR, LI M. Research progress on biosynthesis mechanisms and physicochemical properties of bacterial cellulose and its application[J]. Journal of Fujian Normal University (Natural Science Edition), 2021, 37(3): 1-9(in Chinese).
    [4] ZHENG X, NIE WX, XU J, ZHANG H, LIANG XL, CHEN ZJ. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose[J]. Food Research International, 2022, 162(Pt A): 112024.
    [5] NIE WX, ZHENG X, FENG W, LIU Y, LI YD, LIANG XL. Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome[J]. LWT-Food Science and Technology, 2022, 165: 113763.
    [6] 夏凯. 巴氏醋杆菌耐酸性分子机制的研究[D]. 杭州: 浙江工商大学博士学位论文, 2020. XIA K. Molecular mechanisms of Acetobacter pasteurianus in acetic acid resistance[D]. Hangzhou: Doctoral Dissertation of Zhejiang Gongshang University, 2020(in Chinese).
    [7] RÖMLING U, GALPERIN MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions[J]. Trends in Microbiology, 2015, 23(9): 545-557.
    [8] LI GH, WANG L, DENG Y, WEI QF. Research progress of the biosynthetic strains and pathways of bacterial cellulose[J]. Journal of Industrial Microbiology & Biotechnology, 2022, 49(1): kuab071.
    [9] NICOLAS WJ, GHOSAL D, TOCHEVA EI, MEYEROWITZ EM, JENSEN GJ. Structure of the bacterial cellulose ribbon and its assembly-guiding cytoskeleton by electron cryotomography[J]. Journal of Bacteriology, 2021, 203(3): e00371-20.
    [10] ABIDI W, ZOUHIR S, CALEECHURN M, ROCHE S, KRASTEVA PV. Architecture and regulation of an enterobacterial cellulose secretion system[J]. Science Advances, 2021, 7(5): eabd8049.
    [11] ZOUHIR S, ABIDI W, CALEECHURN M, KRASTEVA PV. Structure and multitasking of the c-di-GMP-sensing cellulose secretion regulator BcsE[J]. mBio, 2020, 11(4): e01303-20.
    [12] KRASTEVA PV, BERNAL-BAYARD J, TRAVIER L, MARTIN FA, KAMINSKI PA, KARIMOVA G, FRONZES R, GHIGO JM. Insights into the structure and assembly of bacterial cellulose secretion system[J]. Nature Communications, 2017, 8(1): 2065.
    [13] ANDERSON AC, BURNETT AJN, HISCOCK L, MALY KE, WEADGE JT. The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase[J]. The Journal of Biological Chemistry, 2020, 295(18): 6225-6235.
    [14] ABIDI W, TORRES-SÁNCHEZ L, SIROY A, KRASTEVA PV. Weaving of bacterial cellulose by the Bcs secretion systems[J]. FEMS Microbiology Reviews, 2022, 46(2): fuab051.
    [15] TAJIMA K, IMAI T, YUI T, YAO M, SAXENA I. Cellulose-synthesizing machinery in bacteria[J]. Cellulose, 2022, 29(5): 2755-2777.
    [16] KONDO T, NAKAMURA Y, NOJIMA S, YAO M, IMAI T. The BcsD subunit of type I bacterial cellulose synthase interacts dynamically with the BcsAB catalytic core complex[J]. FEBS Letters, 2022, 596(23): 3069-3086.
    [17] KLEMM D, HEUBLEIN B, FINK HP, BOHN A. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie (International Ed in English), 2005, 44(22): 3358-3393.
    [18] 刘静雯, 刘浩. 一株产细菌纤维素的汉逊氏醋杆菌及应用: CN116716215A[P]. 2023-09-08. LIU JW, LIU H. Acetobacter hansenii for producing bacterial cellulose and application of Acetobacter hansenii: CN116716215A[P]. 2023-09-08(in Chinese).
    [19] ZHENG YJ, CHEN M, LI JX, FEI SW, SHANG S, LIU SX, LIU LX, LI CF. Whole-genome analysis of novacetimonas cocois and the effects of carbon sources on synthesis of bacterial cellulose[J]. Fermentation, 2023, 9(11): 972.
    [20] GULLO M, CAGGIA C, de VERO L, GIUDICI P. Characterization of acetic acid bacteria in “traditional balsamic vinegar”[J]. International Journal of Food Microbiology, 2006, 106(2): 209-212.
    [21] JIANG HY, SONG ZM, HAO YF, HU XP, LIN X, LIU SX, LI CF. Effect of co-culture of Komagataeibacter nataicola and selected Lactobacillus fermentum on the production and characterization of bacterial cellulose[J]. LWT, 2023, 173: 114224.
    [22] LEE S, ABRAHAM A, LIM ACS, CHOI O, SEO JG, SANG BI. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans[J]. Bioresource Technology, 2021, 342: 125918.
    [23] KUMAR R, PATHAK A, SINGH P, KUMAR KD. In-situ production and collection of bacterial cellulose on jute and flax mats by static cultivation[J]. Journal of Natural Fibers, 2022, 19(13): 4938-4948.
    [24] PANESAR PS, CHAVAN Y, CHOPRA HK, KENNEDY JF. Production of microbial cellulose: response surface methodology approach[J]. Carbohydrate Polymers, 2012, 87(1): 930-934.
    [25] KOLESOVS S, RUKLISHA M, SEMJONOVS P. Synthesis of bacterial cellulose by Komagataeibacter rhaeticus MSCL 1463 on whey[J]. 3 Biotech, 2023, 13(3): 105.
    [26] SKIBA EA, SHAVYRKINA NA, SKIBA MA, MIRONOVA GF, BUDAEVA VV. Biosynthesis of bacterial nanocellulose from low-cost cellulosic feedstocks: effect of microbial producer[J]. International Journal of Molecular Sciences, 2023, 24(18): 14401.
    [27] GORGIEVA S, JANČIČ U, CEPEC E, TRČEK J. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518[J]. International Journal of Biological Macromolecules, 2023, 244: 125368.
    [28] NALOKA K, YUKPHAN P, MATSUSHITA K, THEERAGOOL G. Molecular taxonomy and characterization of thermotolerant Komagataeibacter species for bacterial nanocellulose production at high temperatures[J].Chiang Mai Journal of Science, 2018, 45(4): 1610-1622.
    [29] 郭丹, 李元敬, 雷虹, 张彦龙, 曾伟民. 纤维素产生菌汉氏葡糖醋杆菌HDM1-3全基因组测序分析[J]. 黑龙江大学自然科学学报, 2023, 40(4): 425-433, 505. GUO D, LI YJ, LEI H, ZHANG YL, ZENG WM. Whole genome sequencing analysis of the cellulose-producing strain Komagataeibacter hansenii HDM1-3[J]. Journal of Natural Science of Heilongjiang University, 2023, 40(4): 425-433, 505(in Chinese).
    [30] LI WC, HUANG XX, LIU H, LIAN H, XU B, ZHANG WJ, SUN XW, WANG W, JIA SR, ZHONG C. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus[J]. Carbohydrate Polymers, 2023, 313: 120892.
    [31] MOLINA-RAMÍREZ C, ENCISO C, TORRES-TABORDA M, ZULUAGA R, GAÑÁN P, ROJAS OJ, CASTRO C. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis[J]. International Journal of Biological Macromolecules, 2018, 117: 735-741.
    [32] GRESER AB, AVCIOGLU NH. Optimization and physicochemical characterization of bacterial cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti strains isolated from grape, thorn apple and apple vinegars[J]. Archives of Microbiology, 2022, 204(8): 465.
    [33] DUBEY S, SINGH J, SINGH RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation[J]. Bioresource Technology, 2018, 247: 73-80.
    [34] NGUYEN TP, NGUYEN NN, LIEN TN, NGUYEN QD. Tannin removal of cashew apple juice by powdered gelatin treatment and its utilization in bacterial cellulose production[J]. Applied Biochemistry and Biotechnology, 2023: 273-289.
    [35] GOMES FP, SILVA NHCS, TROVATTI E, SERAFIM LS, DUARTE MF, SILVESTRE AJD, NETO CP, FREIRE CSR. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue[J]. Biomass and Bioenergy, 2013, 55: 205-211.
    [36] VELÁSQUEZ-RIAÑO M, LOMBANA-SÁNCHEZ N, VILLA-RESTREPO AF, FERNÁNDEZ-CALLE EP. Cellulose production by Gluconacetobacter kakiaceti GM5 in two batch process using vinasse as culture media[J]. Water Science and Technology: Journal of the International Association on Water Pollution Research, 2013, 68(5): 1079-1084.
    [37] CASTRO C, ZULUAGA R, PUTAUX JL, CARO G, MONDRAGON I, GAÑÁN P. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes[J]. Carbohydrate Polymers, 2011, 84(1): 96-102.
    [38] HUNGUND BS, GUPTA SG. Improved production of bacterial cellulose from Gluconacetobacter persimmonis GH-2[J]. Journal of Microbial & Biochemical Technology, 2010, 2(5): 127-133.
    [39] ASWINI K, GOPAL NO, UTHANDI S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1[J]. BMC Biotechnology, 2020, 20(1): 46.
    [40] ÇOBAN E, BIYIK H. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniens???呈????????????剣??吠???敲汮污畬氠潯獦攠?捩潯浴灥汣敨浮敯湬瑯楧湹本?昲愰挱琱漬爠???挠瀵??椶猭‵″渵攴眮?浢敲派扛攴爱?漠晍?瑇桅敓?挠敓氬氠畋汕潍獁敒?獔祐測琠桍慕獒敕?捁潎洠灍氮攠硁??瑵敮牰浲楥湣慥汤?据潴浥灤氠敢硡??楥湲??捬攠瑣潥扬慬捵瑬敯牳?硣礠汭楡湴略浲孩?嵬???潲甠牤湥慦汬?潯晲??楡潴獩捯楮攠湯捦攠?慡湴摥??楊潝攮渠杒楓湃攠敁牤楶湡杮????ㄠ?????????????????劳??戭爱?嬴??崶?夼?乲?????丠??????删?乁????丠????塂?乔??????吠????割????????丠??呬?????佥?呰????獣潩汮慧琠楇潬湵?慯湮摡?捥桴慯牢慡捣瑴敥牲椠穳慰瑰椮漠湩?漠晦?瑵睩潴?捳敡汭汰畬汥潳猠敡?浤漠牫灯桭潢汵潣杨祡?浴略瑡愬渠瑡獮?漠晰??汤畵捣潴湩慯据攠瑯潦戠慴捨瑥攠牢?桯慰湯獬敹湭楥楲??呝?????????瀠牂潩摯畣捨楥湭杩?捴敲汹氠畡汮潤猠敂?睯楴瑥档?汮潯睬敯牧?挬爠礲猰琱愵氬氠椱渷椶琨礴嬩?崠??倶?漭匱?伷渳攮????????ㄠえ?????攬?????????戠牋?孍??嵙?吠???吠卓啙???奁??????传?奅???漠汋敊挮甠汅慮牨?摮楣獥獤攠捰瑲楯潤湵?潴晩?瑮栠敯?匠敢污散湴潥浲潩湡慬猠?牥畬浬極湬慯湳瑥椠畩浮?捋敯汭污?敡湴癡敥汩潢灡散?慥湲搠?汹祬獩楮湵敳?摶敩捡愠牴扵潮硩祮汧愠獯敦?楢湩癯潳汹癮整摨?楳湩?琠桧敥?扥楳漠獷祩湴瑨栠敳獹楮獴?潥晴?灣漠汒祂慓浛楊湝攮?捊潯癵慲汮敡湬琠汯祦?汍楩湣歲敯摢?瑯潬?瑧桹攠?据敤氠求?睯慴汥汣?灮敯灬瑯楧摹漬朠氲礰挲愰測?氳愰礨改爩嬺?崱?″?椭漱猴挳椵攮渼换敲???椴潝琠敌捉栠湊漬氠潃杈祅??慇湇搬??楈潁捎桇攠浒椬猠瑗牕礠??㈠ずぅ????????????????Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea[J]. Biotechnology and Applied Biochemistry, 2019, 66(1): 108-118.
    [45] SUNAGAWA N, TAJIMA K, HOSODA M, KAWANO S, KOSE R, SATOH Y, YAO M, DAIRI T. Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis[J]. Cellulose, 2012, 19(6): 1989-2001.
    [46] JASME N, ELANGOVAN J, MOHD YAHYA AR, MD NOH NA, BUSTAMI Y. First report of biocellulose production by an indigenous yeast, Pichia kudriavzevii USM-YBP2[J]. Green Processing and Synthesis, 2022, 11(1): 458-477.
    [47] RASTOGI A, BANERJEE R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization[J]. Process Biochemistry, 2020, 91: 297-302.
    [48] JAHN CE, SELIMI DA, BARAK JD, CHARKOWSKI AO. The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon[J]. Microbiology, 2011, 157(Pt 10): 2733-2744.
    [49] THONGSOMBOON W, SERRA DO, POSSLING A, HADJINEOPHYTOU C, HENGGE R, CEGELSKI L. Phosphoethanolamine cellulose: naturally produced chemically modified cellulose[J]. Science, 2018, 359(6373): 334-338.
    [50] MORGAN JLW, McNAMARA JT, ZIMMER J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP[J]. Nature Structural & Molecular Biology, 2014, 21: 489-496.
    [51] HU SQ, GAO YG, TAJIMA K, SUNAGAWA N, ZHOU Y, KAWANO S, FUJIWARA T, YODA T, SHIMURA D, SATOH Y, MUNEKATA M, TANAKA I, YAO M. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 17957-17961.
    [52] YASUTAKE Y, KAWANO S, TAJIMA K, YAO M, SATOH Y, MUNEKATA M, TANAKA I. Structural characterization of the Acetobacter xylinum endo-beta-1,4-glucanase CMCax required for cellulose biosynthesis[J]. Proteins, 2006, 64(4): 1069-1077.
    [53] MORGAN JLW, STRUMILLO J, ZIMMER J. Crystallographic snapshot of cellulose synthesis and membrane translocation[J]. Nature, 2013, 493: 181-186.
    [54] D’ANDREA LD, REGAN L. TPR proteins: the versatile helix[J]. Trends in Biochemical Sciences, 2003, 28(12): 655-662.
    [55] La CHINA S, BEZZECCHI A, MOYA F, PETRONI G, Di GREGORIO S, GULLO M. Genome sequencing and phylogenetic analysis of K1G4: a new Komagataeibacter strain producing bacterial cellulose from different carbon sources[J]. Biotechnology Letters, 2020, 42(5): 807-818.
    [56] MATTHYSSE AG, MARRY M, KRALL L, KAYE M, RAMEY BE, FUQUA C, WHITE AR. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens[J]. Molecular Plant-Microbe Interactions: MPMI, 2005, 18(9): 1002-1010.
    [57] ROCHA ARFDS, VENTURIM BC, ELLWANGER ERA, PAGNAN CS, SILVEIRA WBD, MARTIN JGP. Bacterial cellulose: strategies for its production in the context of bioeconomy[J]. Journal of Basic Microbiology, 2023, 63(3/4): 257-275.
    [58] DUBEY S, SHARMA RK, AGARWAL P, SINGH J, SINHA N, SINGH RP. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, micro-factory for macroscale production of bacterial nanocellulose[J]. International Journal of Biological Macromolecules, 2017, 96: 52-60.
    [59] OMADJELA O, NARAHARI A, STRUMILLO J, MÉ;LIDA H, MAZUR O, BULONE V, ZIMMER J. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17856-17861.
    [60] 卯海龙, 韩永和, 王珊珊, 章文贤, 蒋咏梅. 细菌纤维素的合成原料多样性及其合成机制研究概况[J]. 纤维素科学与技术, 2019, 27(3): 68-76. MAO HL, HAN YH, WANG SS, ZHANG WX, JIANG YM. Research advances of the diversity of synthetic raw materials and its synthesis mechanism of bacterial cellulose[J]. Journal of Cellulose Science and Technology, 2019, 27(3): 68-76(in Chinese).
    [61] FU Y, YU ZQ, LIU S, CHEN B, ZHU L, LI Z, CHOU SH, HE J. C-di-GMP regulates various phenotypes and insecticidal activity of Gram-positive Bacillus thuringiensis[J]. Frontiers in Microbiology, 2018, 9: 45.
    [62] 唐静, 田青, 惠明. 细菌纤维素的合成调控及在化妆品领域的应用进展[J]. 发酵科技通讯, 2019, 48(4): 204-209. TANG J, TIAN Q, HUI M. Synthesis and regulation of bacterial cellulose and its application in cosmetics[J]. Bulletin of Fermentation Science and Technology, 2019, 48(4): 204-209(in Chinese).
    [63] MANAN S, ULLAH MW, UL-ISLAM M, SHI ZJ, GAUTHIER M, YANG G. Bacterial cellulose: molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties[J]. Progress in Materials Science, 2022, 129: 100972.
    [64] DU J, VEPACHEDU V, CHO SH, KUMAR M, NIXON BT. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4Á resolution[J]. PLoS One, 2016, 11(5): e0155886.
    [65] MEHTA K, PFEFFER S, BROWN RM. Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus[J]. Cellulose, 2015, 22(1): 119-137.
    [66] SUN SJ, IMAI T, SUGIYAMA J, KIMURA S. CesA protein is included in the terminal complex of Acetobacter[J]. Cellulose, 2017, 24(5): 2017-2027.
    [67] SUNAGAWA N, FUJIWARA T, YODA T, KAWANO S, SATOH Y, YAO
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

聂雯霞,古梦洁,钟卫鸿. 细菌纤维素合成酶亚基多样性和纤维结构形成研究进展[J]. 生物工程学报, 2024, 40(9): 2797-2811

复制
分享
文章指标
  • 点击次数:268
  • 下载次数: 705
  • HTML阅读次数: 607
  • 引用次数: 0
历史
  • 收稿日期:2023-12-07
  • 最后修改日期:2024-01-29
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6452177位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司