对苯二甲酸单羟乙酯水解酶结构与功能的研究进展
作者:
基金项目:

国家自然科学基金(22103071, 32201037);浙江省“高层次人才特殊支持计划”科技创新领军人才项目(2022R52024)


Advances in the structure and function of MHETase
Author:
  • YANG Meiyuan

    YANG Meiyuan

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FAN Fangfang

    FAN Fangfang

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China;State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Lingjuan

    HE Lingjuan

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Jie

    CHEN Jie

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Linquan

    WANG Linquan

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIU Shuai

    QIU Shuai

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Lyu Changjiang

    Lyu Changjiang

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Jun

    HUANG Jun

    Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [74]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)作为目前广泛使用的塑料之一,其废弃物对全球环境造成了严重污染。PET降解酶(polyethylene terephthalate hydrolase, PETase)的发现为处理PET废弃物提供了一种绿色环保的途径。尽管PETase降解PET会产生中间产物,抑制水解酶的进一步降解,影响酶的催化效率,但对苯二甲酸单羟乙酯水解酶[mono(2-hydroxyethyl) terephthalate hydrolase, MHETase]通过与PETase协同作用,将PETase水解产生的中间产物MHET高效降解为乙二醇(ethylene glycol, EG)和对苯二甲酸(terephthalic acid, TPA)。MHETase对MHET表现出极高的特异性,是完全降解PET的关键酶。本文全面梳理了MHETase的三维结构、底物结合模式以及催化反应机理等,介绍了该酶降解活性的结构特征和关键残基,以及酶工程改造的研究进展。同时,对基于MHETase支架结合PETase开发定制的酶促PET降解系统进行了展望,为设计和开发更加高效的PET水解酶体系提供了参考。

    Abstract:

    Polyethylene terephthalate (PET) is one of the widely used plastics, but its waste pollution has become a global environmental issue. The discovery of polyethylene terephthalate hydrolase (PETase) has provided a green and environmentally friendly approach for PET degradation. However, PETase produces intermediate products that inhibit the enzyme’s further activity, leading to a decrease in enzyme efficiency. Mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) works synergistically with PETase to further degrade the intermediate product MHET into ethylene glycol (EG) and terephthalic acid (TPA). MHETase exhibits extremely high specificity for MHET and is crucial for the complete degradation of PET. This article comprehensively reviews MHETase from various perspectives, including its three-dimensional structure, substrate binding, and catalytic mechanism. It demonstrates the structural features and key residues associated with the enzyme’s degrading activity and discusses the progress in enzyme engineering modifications. Additionally, the study envisions the development of a two-enzyme PET degradation system by combining MHETase with PETase, aiming to provide valuable references for designing and developing more efficient PET hydrolytic enzyme systems.

    参考文献
    [1] WEBB HK, ARNOTT J, CRAWFORD RJ, IVANOVA EP. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)[J]. Polymers, 2012, 5(1): 1-18.
    [2] 吴灿伟, 封彤波, 阎旭, 吴福信. 封套材料在军用装备封存包装中的应用及发展趋势[J]. 包装工程, 2009, 30(9): 53-57. WU CW, FENG TB, YAN X, WU FX. Application and development trend of envelope materials in military equipment preservative packaging[J]. Packaging Engineering, 2009, 30(9): 53-57(in Chinese).
    [3] 董文丽. 阻隔性包装材料及生产技术的应用发展[J]. 包装工程, 2009, 30(10): 117-120. DONG WL. Application and development of barrier packaging materials and their production technologies[J]. Packaging Engineering, 2009, 30(10): 117-120(in Chinese).
    [4] 贝荣华, 黄崇杏, 陈强, 李志嘉, 苏红霞, 王健. SiOx/PET复合薄膜的力学性能及阻隔性能[J]. 包装工程, 2017, 38(19): 57-62. BEI RH, HUANG CX, CHEN Q, LI ZJ, SU HX, WANG J. Mechanical properties and barrier properties of SiOx/PET composite films[J]. Packaging Engineering, 2017, 38(19): 57-62(in Chinese).
    [5] BORNSCHEUER UT. Feeding on plastic[J]. Science, 2016, 351(6278): 1154-1155.
    [6] TOKIWA Y, CALABIA BP, UGWU CU, AIBA S. Biodegradability of plastics[J]. International Journal of Molecular Sciences, 2009, 10(9): 3722-3742.
    [7] 石利霞, 高松枫, 朱蕾蕾. PET水解酶的研究进展[J]. 生物技术通报, 2020, 36(10): 226-236. SHI LX, GAO SF, ZHU LL. Research advance in polyethylene terephthalate hydrolytic enzymes[J]. Biotechnology Bulletin, 2020, 36(10): 226-236(in Chinese).
    [8] WALKER TR, FEQUET L. Current trends of unsustainable plastic production and micro(nano)plastic pollution[J]. TrAC Trends in Analytical Chemistry, 2023, 160: 116984.
    [9] LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal[J]. Palgrave Communications, 2019, 5: 6.
    [10] GOMES TS, VISCONTE LLY, PACHECO EBAV. Life cycle assessment of polyethylene terephthalate packaging: an overview[J]. Journal of Polymers and the Environment, 2019, 27(3): 533-548.
    [11] MacLEOD M, ARP HPH, TEKMAN MB, JAHNKE A. The global threat from plastic pollution[J]. Science, 2021, 373(6550): 61-65.
    [12] SANTOS RG, MACHOVSKY-CAPUSKA GE, ANDRADES R. Plastic ingestion as an evolutionary trap: toward a holistic understanding[J]. Science, 2021, 373(6550): 56-60.
    [13] MÜ;LLER RJ, KLEEBERG I, DECKWER WD. Biodegradation of polyesters containing aromatic constituents[J]. Journal of Biotechnology, 2001, 86(2): 87-95.
    [14] LAMB JB, WILLIS BL, FIORENZA EA, COUCH CS, HOWARD R, RADER DN, TRUE JD, KELLY LA, AHMAD A, JOMPA J, HARVELL CD. Plastic waste associated with disease on coral reefs[J]. Science, 2018, 359(6374): 460-462.
    [15] WORM B, LOTZE HK, JUBINVILLE I, WILCOX C, JAMBECK J. Plastic as a persistent marine pollutant[J]. Annual Review of Environment and Resources, 2017, 42: 1-26.
    [16] 支睿, 卢艳波, 王敏, 李国辉, 邓禹. 生物可降解塑料单体二元羧酸的生物合成研究进展[J]. 生物工程学报, 2023, 39(5): 2081-2094. ZHI R, LU YB, WANG M, LI GH, DENG Y. Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2081-2094(in Chinese).
    [17] 李秀华, 王自瑛. PET降解研究进展[J]. 塑料科技, 2011, 39(4): 110-114. LI XH, WANG ZY. Research progress on degradation of PET[J]. Plastics Science and Technology, 2011, 39(4): 110-114(in Chinese).
    [18] 周星, 邢科, 方长青, 李亚光, 李梦尧, 宋婧. 包装废弃PET瓶的处理及再生资源化技术研究进展[J]. 包装学报, 2019, 11(3): 16-23. ZHOU X, XING K, FANG CQ, LI YG, LI MY, SONG J. Recent research progress in reclamation and recycling of waste PET bottles[J]. Packaging Journal, 2019, 11(3): 16-23(in Chinese).
    [19] 许睿, 陈方, 丁陈君. 循环生物经济背景下我国塑料降解回收发展的机遇、挑战及建议[J]. 生物工程学报, 2023, 39(5): 1867-1882. XU R, CHEN F, DING CJ. Opportunities, challenges and suggestions for the development of plastic degradation and recycling under the context of circular bioeconomy[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1867-1882(in Chinese).
    [20] 张宗豪, 何宏韬, 张旭, 郑爽, 郑陶然, 刘絮, 陈国强. 塑料的降解与可降解塑料——聚羟基脂肪酸酯的合成[J]. 生物工程学报, 2023, 39(5): 2053-2069. ZHANG ZH, HE HT, ZHANG X, ZHENG S, ZHENG TR, LIU X, CHEN GQ. The degradation of plastics and the production of polyhydroxyalkanoates (PHA)[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2053-2069(in Chinese).
    [21] SINHA V, PATEL MR, PATEL JV. Pet waste management by chemical recycling: review[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
    [22] RAGAERT K, DELVA L, van GEEM K. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017, 69: 24-58.
    [23] YOSHIOKA T, SATO T, OKUWAKI A. Hydrolysis of waste PET by sulfuric acid at 150°C for a chemical recycling[J]. Journal of Applied Polymer Science, 1994, 52(9): 1353-1355.
    [24] 刘欣悦, 崔颖璐. PET塑料废弃物及微塑料生物降解与转化的研究现状与展望[J]. 生物加工过程, 2022, 20(2): 226-234. LIU XY, CUI YL. Biodegradation and conversion of polyethylene terephthalate (PET) wastes and microplastics: a review[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(2): 226-234(in Chinese).
    [25] 覃伟洪, 杨志祥, 张海霞, 丁功涛. 聚对苯二甲酸乙二酯微生物降解研究进展[J]. 上海塑料, 2022, 50(2): 13-18. QIN WH, YANG ZX, ZHANG HX, DING GT. Research progress on microbial degradation of polyethylene terephthalate[J]. Shanghai Plastics, 2022, 50(2): 13-18(in Chinese).
    [26] 刘彤瑶, 辛艺, 刘杏忠, 吴冰, 向梅春. 微生物降解塑料的研究进展[J]. 生物工程学报, 2021, 37(8): 2688-2702. LIU TY, XIN Y, LIU XZ, WU B, XIANG MC. Advances in microbial degradation of plastics[J]. Chinese Journal of Biotechnology, 2021, 37(8): 2688-2702(in Chinese).
    [27] 金琰, 蔡凡凡, 王立功, 宋超, 金文雄, 孙俊芳, 刘广青, 陈畅. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808. JIN Y, CAI FF, WANG LG, SONG C, JIN WX, SUN JF, LIU GQ, CHEN C. Advance in the degradation of biodegradable plastics in different environments[J]. Chinese Journal of Biotechnology, 2022, 38(5): 1784-1808(in Chinese).
    [28] SHARMA B, DANGI AK, SHUKLA P. Contemporary enzyme based technologies for bioremediation: review[J]. Journal of Environmental Management, 2018, 210: 10-22.
    [29] 陈佳妮. 变废为宝: 利用活性污泥生产生物可降解塑料聚-3-羟基丁酸酯[J]. 生物工程学报, 2017, 33(12): 1934-1944. CHEN JN. From waste to treasure: turning activated sludge into bioplastic poly-3-hydroxybutyrate[J]. Chinese Journal of Biotechnology, 2017, 33(12): 1934-1944(in Chinese).
    [30] 张彤, 刘盼, 王倩, 梁泉峰, 祁庆生. 降解石油基塑料的微生物及微生物菌群[J]. 生物工程学报, 2021, 37(10): 3520-3534. ZHANG T, LIU P, WANG Q, LIANG QF, QI QS. Degradation of petroleum-based plastics by microbes and microbial consortia[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3520-3534(in Chinese).
    [31] 彭瑞婷, 夏孟丽, 茹家康, 霍毅欣, 杨宇. 聚氨酯塑料的微生物降解[J]. 生物工程学报, 2018, 34(9): 1398-1409. PENG RT, XIA ML, RU JK, HUO YX, YANG Y. Microbial degradation of polyurethane plastics[J]. Chinese Journal of Biotechnology, 2018, 34(9): 1398-1409(in Chinese).
    [32] 张李婷, 张博, 许维东, 崔中利, 曹慧. 聚乙烯塑料生物降解研究进展[J]. 生物工程学报, 2023, 39(5): 1949-1962. ZHANG LT, ZHANG B, XU WD, CUI ZL, CAO H. Polyethylene biodegradation: current status and perspectives[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1949-1962(in Chinese).
    [33] 袁英博, 周汶楷, 梁泉峰, 典龙阳, 苏田源, 祁庆生. 生物降解聚烯烃类塑料研究进展[J]. 生物工程学报, 2023, 39(5): 1930-1948. YUAN YB, ZHOU WK, LIANG QF, DIAN LY, SU TY, QI QS. Advances in biodegradation of polyolefin plastics[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1930-1948(in Chinese).
    [34] MÜLLER RJ, SCHRADER H, PROFE J, DRESLER K, DECKWER WD. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17): 1400-1405.
    [35] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
    [36] TANASUPAWAT S, TAKEHANA T, YOSHIDA S, HIRAGA K, ODA K. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate)[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(8): 2813-2818.
    [37] HAN X, LIU WD, HUANG JW, MA JT, ZHENG YY, KO TP, XU LM, CHENG YS, CHEN CC, GUO RT. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature Communications, 2017, 8: 2106.
    [38] SON HF, CHO IJ, JOO S, SEO H, SAGONG HY, CHOI SY, LEE SY, KIM KJ. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019, 9(4): 3519-3526.
    [39] SUN JY, CUI YL, WU B. GRAPE, a greedy accumulated strategy for computational protein engineering[M]. Methods in Enzymology. Amsterdam: Elsevier, 2021: 207-230.
    [40] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3): 1340-1350.
    [41] LU HY, DIAZ DJ, CZARNECKI NJ, ZHU CZ, KIM W, SHROFF R, ACOSTA DJ, ALEXANDER BR, COLE HO, ZHANG Y, LYND NA, ELLINGTON AD, ALPER HS. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667.
    [42] AUSTIN HP, ALLEN MD, DONOHOE BS, RORRER NA, KEARNS FL, SILVEIRA RL, POLLARD BC, DOMINICK G, DUMAN R, EL OMARI K, MYKHAYLYK V, WAGNER A, MICHENER WE, AMORE A, SKAF MS, CROWLEY MF, THORNE AW, JOHNSON CW, LEE WOODCOCK H, McGEEHAN JE, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): E4350-E4357.
    [43] JOO S, CHO IJ, SEO H, SON HF, SAGONG HY, SHIN TJ, CHOI SY, LEE SY, KIM KJ. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9: 382.
    [44] MA Y, YAO MD, LI BZ, DING MZ, HE B, CHEN S, ZHOU X, YUAN YJ. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering[J]. Engineering, 2018, 4(6): 888-893.
    [45] 靳玉瑞, 李爱秀, 张力. 一种新型PET水解酶的结构与催化机制研究进展[J]. 中国塑料, 2019, 33(3): 106-112. JIN YR, LI AX, ZHANG L. Progress of the structure and catalytic mechanism of one new PET hydrolase[J]. China Plastics, 2019, 33(3): 106-112(in Chinese).
    [46] CHEN LY, FAN FF, YANG MY, WANG LQ, BAI YS, QIU S, LYU CJ, HUANG J. Atomistic insight into the binding mode and self-regulation mechanism of IsPETase towards PET substrates with different polymerization degrees[J]. Physical Chemistry Chemical Physics, 2023, 25(27): 18332-18345.
    [47] MAITY W, MAITY S, BERA S, ROY A. Emerging roles of PETase and MHETase in the biodegradation of plastic wastes[J]. Applied Biochemistry and Biotechnology, 2021, 193(8): 2699-2716.
    [48] GRAF LG, MICHELS EAP, YEW Y, LIU WD, PALM GJ, WEBER G. Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis[M]. Methods in Enzymology. Amsterdam: Elsevier, 2021, 648: 337-356.
    [49] FECKER T, GALAZ-DAVISON P, ENGELBERGER F, NARUI Y, SOTOMAYOR M, PARRA LP, RAMÍREZ-SARMIENTO CA. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase[J]. Biophysical Journal, 2018, 114(6): 1302-1312.
    [50] KNOTT BC, ERICKSON E, ALLEN MD, GADO JE, GRAHAM R, KEARNS FL, PARDO I, TOPUZLU E, ANDERSON JJ, AUSTIN HP, DOMINICK G, JOHNSON CW, RORRER NA, SZOSTKIEWICZ CJ, COPIÉ V, PAYNE CM, LEE WOODCOCK H, DONOHOE BS, BECKHAM GT, McGEEHAN JE. Characterization and engineering of a two-enzyme system for plastics depolymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25476-25485.
    [51] CHEN K, DONG XY, SUN Y. Sequentially co-immobilized PET and MHET hydrolases via spy chemistry in calcium phosphate nanocrystals present high-performance PET degradation[J]. Journal of Hazardous Materials, 2022, 438: 129517.
    [52] PALM GJ, REISKY L, BöTTCHER D, MÜLLER H, MICHELS EAP, WALCZAK MC, BERNDT L, WEISS MS, BORNSCHEUER UT, WEBER G. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate[J]. Nature Communications, 2019, 10: 1717.
    [53] SAGONG HY, SEO H, KIM T, SON HF, JOO S, LEE SH, KIM S, WOO JS, HWANG SY, KIM KJ. Decomposition of the PET film by MHETase using exo-PETase function[J]. ACS Catalysis, 2020, 10(8): 4805-4812.
    [54] LOLL-KRIPPLEBER R, SAJTOVICH VA, FERGUSON MW, HO B, BURNS AR, PAYLISS BJ, BELLISSIMO J, PETERS S, ROY PJ, WYATT HDM, BROWN GW. Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol[J]. Microbial Cell Factories, 2022, 21(1): 280.
    [55] MEYER-CIFUENTES IE, WERNER J, JEHMLICH N, WILL SE, NEUMANN-SCHAAL M, öZTÜRK B. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium[J]. Nature Communications, 2020, 11: 5790.
    [56] PINTO AV, FERREIRA P, NEVES RPP, FERNANDES PA, RAMOS MJ, MAGALHÁES AL. Reaction mechanism of MHETase, a PET degrading enzyme[J]. ACS Catalysis, 2021, 11(16): 10416-10428.
    [57] SULAIMAN S, YOU DJ, KANAYA E, KOGA Y, KANAYA S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase[J]. Biochemistry, 2014, 53(11): 1858-1869.
    [58] LENFANT N, HOTELIER T, VELLUET E, BOURNE Y, MARCHOT P, CHATONNET A. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions[J]. Nucleic Acids Research, 2013, 41(database issue): D423-D429.
    [59] REN B, WU MB, WANG Q, PENG XH, WEN H, McKINSTRY WJ, CHEN QM. Crystal structure of tannase from Lactobacillus plantarum[J]. Journal of Molecular Biology, 2013, 425(15): 2737-2751.
    [60] MEYER-CIFUENTES IE, öZTÜRK B. Mle046 is a marine mesophilic MHETase-like enzyme[J]. Frontiers in Microbiology, 2021, 12: 693985.
    [61] von HAUGWITZ G, HAN X, PFAFF L, LI Q, WEI HL, GAO J, METHLING K, AO YF, BRACK Y, MICAN J, FEILER CG, WEISS MS, BEDNAR D, PALM GJ, LALK M, LAMMERS M, DAMBORSKY J, WEBER G, LIU WD, BORNSCHEUER UT, et al. Structural insights into (tere)phthalate-ester hydrolysis by a carboxylesterase and its role in promoting PET depolymerization[J]. ACS Catalysis, 2022, 12(24): 15259-15270.
    [62] JAEGER KE, RANSAC S, DIJKSTRA BW, COLSON C, van HEUVEL M, MISSET O. Bacterial lipases[J]. FEMS Microbiology Reviews, 1994, 15(1): 29-63.
    [63] ZHANG ZY, LV JW, WANG Y, YU HL, GUO BL, ZHAI JH, WANG CJ, ZHAO Y, FAN FF, LUO W. Static binding and dynamic transporting-based design of specific ring-chain-ring acetylcholinesterase inhibitor: from galantamine to natural product[J]. Chemistry-a European Journal, 2023, 29(25): e202203363.
    [64] 赵彧瑾, 陈仔君, 赵晶晶, 苏婷婷, 王战勇. 聚对苯二甲酸乙二醇酯(PET)降解酶的研究进展[J]. 微生物学杂志, 2021, 41(6): 90-96. ZHAO YJ, CHEN ZJ, ZHAO JJ, SU TT, WANG ZY. Advanced in degradation enzyme of polyethylene terephthalate (PET)[J]. Journal of Microbiology, 2021, 41(6): 90-96(in Chinese).
    [65] 赵之怡, 张国强, 刘琨, 李盛英. 聚对苯二甲酸乙二醇酯水解酶研究进展[J]. 生物工程学报, 2023, 39(5): 1998-2014. ZHAO ZY, ZHANG GQ, LIU K, LI SY. Advances in poly(ethylene terephthalate) hydrolases[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1998-2014(in Chinese).
    [66] 卢艺, 韩瑞枝, SCHWANEBERG Ulrich, 季宇. 评论: 塑料结合模块促进聚对苯二甲酸乙二醇酯的酶法降解[J]. 生物工程学报, 2023, 39(5): 1883-1888. LU Y, HAN RZ, SCHWANEBERG U, JI Y. Commentary: polymer binding modules accelerate enzymatic degradation of poly(ethylene terephthalate)[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1883-1888(in Chinese).
    [67] 曲戈, 朱彤, 蒋迎迎, 吴边, 孙周通. 蛋白质工程: 从定向进化到计算设计[J]. 生物工程学报, 2019, 35(10): 1843-1856. QU G, ZHU T, JIANG YY, WU B, SUN ZT. Protein engineering: from directed evolution to computational design[J]. Chinese Journal of Biotechnology, 2019, 35(10): 1843-1856(in Chinese).
    [68] 孙瑨原, 崔颖璐, 吴边. 合成生物学中蛋白质计算预测设计的应用与发展[J]. 生命科学, 2021, 33(12): 1436-1444. SUN JY, CUI YL, WU B. Application and development trend of computational protein prediction and design in synthetic biology[J]. Chinese Bulletin of Life Sciences, 2021, 33(12): 1436-1444(in Chinese).
    [69] LIU CZ, LV N, SONG YL, DONG LJ, HUANG M, SHEN Q, REN GR, WU RB, WANG BJ, CAO ZX, XIE HJ. Interaction mechanism between zein and β-lactoglobulin: insights from multi-spectroscopy and molecular dynamics simulation methods[J]. Food Hydrocolloids, 2023, 135: 108226.
    [70] 曲戈, 赵晶, 郑平, 孙际宾, 孙周通. 定向进化技术的最新进展[J]. 生物工程学报, 2018, 34(1): 1-11. QU G, ZHAO J, ZHENG P, SUN JB, SUN ZT. Recent advances in directed evolution[J]. Chinese Journal of Biotechnology, 2018, 34(1): 1-11(in Chinese).
    [71] SUN JY, WU B. Protein design with a machine-learned potential about backbone designability[J]. Trends in Biochemical Sciences, 2022, 47(8): 638-640.
    [72] 崔颖璐, 吴边. 计算机辅助蛋白结构预测及酶的计算设计研究进展[J]. 广西科学, 2017, 24(1): 1-6. CUI YL, WU B. A brief overview of computational protein structure prediction and enzyme design[J]. Guangxi Sciences, 2017, 24(1): 1-6(in Chinese).
    [73] 樊芳芳, 付玉状, 曹泽星. 酶催化过程的量子-经典力学研究进展[J]. 科学通报, 2021, 66(10): 1131-1143. FAN FF, FU YZ, CAO ZX. QM/MM study of the enzymatic catalysis[J]. Chinese Science Bulletin, 2021, 66(10): 1131-1143(in Chinese).
    [74] CUI YL, WANG YH, TIAN WY, BU YF, LI T, CUI XX, ZHU T, LI RF, WU B. Development of a versatile and efficient C-N lyase platform for asymmetric hydroamination via computational enzyme redesign[J]. Nature Catalysis, 2021, 4(5): 364-373.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨媚媛,樊芳芳,何灵娟,陈杰,王林泉,邱帅,吕常江,黄俊. 对苯二甲酸单羟乙酯水解酶结构与功能的研究进展[J]. 生物工程学报, 2024, 40(9): 2812-2830

复制
分享
文章指标
  • 点击次数:291
  • 下载次数: 625
  • HTML阅读次数: 748
  • 引用次数: 0
历史
  • 收稿日期:2023-11-17
  • 最后修改日期:2024-01-04
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6362957位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司