一碳气体生物转化合成油脂类化学品的研究进展
作者:
基金项目:

国家重点研发计划(2021YFC2103500);国家自然科学基金(22178281, 22108219);陕西省杰出青年科学基金(2022JC-09);陕西高校青年创新团队项目


Research progress in bioconversion of C1 gases into oleochemicals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过改造或强化工业微生物,实现以一碳气体为原料生物合成能源和平台化学品,对减少化石资源消耗和温室气体排放具有重大意义。嗜甲烷菌、微藻和产乙酸菌能天然利用甲烷、二氧化碳或一氧化碳等一碳气体,将其转化为不同碳链长度的油脂类化学品,在绿色生物制造领域备受关注。本文围绕生物油脂类化学品的低碳生物合成,全面总结了微生物作为细胞工厂利用一碳气体合成油脂类化学品的研究进展,详细介绍了一碳细胞工厂的油脂合成相关代谢途径,并从基因表达调控、代谢路径重构以及发酵过程优化等角度,系统阐述并探讨了一碳气体合成油脂类化学品技术的研究进展和应用前景,为实现一碳气体的高效生物利用及发展碳循环生物经济模式提供了理论支持。

    Abstract:

    The utilization of C1 gases (CH4, CO2, and CO) for the production of oleochemicals applied in the energy and platform chemicals through microbial engineering has emerged as a promising approach to reduce greenhouse gas emissions and decrease dependence on fossil fuel. C1 gas-utilizing microorganisms, such as methanotrophs, microalgae, and acetogens, are capable of converting C1 gases as the sole substrates for cell growth and oleochemical synthesis with different carbon-chain lengths, garnering considerable attention from both scientific community and industry field for sustainable biomanufacturing. This paper comprehensively reviews recent advancements in the development of engineered cell factories utilizing C1 gases for the production of oleochemicals, elucidating the key metabolic pathways of biosynthesis. Furthermore, this paper highlights the research progress and prospects in optimizing gene expression, metabolic pathway reconstruction, and fermentation conditions for efficient oleochemical production from C1 gases. This review provides valuable insights and guidance for the efficient utilization of C1 gases and the development of carbon cycling-based bioeconomy.

    参考文献
    [1] IEA. Global energy review: CO2 emissions in 2022[EB/OL]. [2024-01-01]. https://www.iea.org/reports/ CO2-emissions-in-2022.
    [2] IEA. Global methane tracker 2022[EB/OL]. [2024-01-01]. https://www.iea.org/reports/global-methane-tracker-2022.
    [3] 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. WANG YL, CHAO W, LAN XC, MO ZP, TONG SH, WANG TF. Review of ethanol production via biological syngas fermentation[J]. CIESC Journal, 2022, 73(8): 3448-3460(in Chinese).
    [4] HU LZ, GUO SQ, WANG B, FU RZ, FAN DD, JIANG M, FEI Q, GONZALEZ R. Bio-valorization of C1 gaseous substrates into bioalcohols: potentials and challenges in reducing carbon emissions[J]. Biotechnology Advances, 2022, 59: 107954.
    [5] GAO ZX, GUO SQ, CHEN YH, CHEN HS, FU RZ, SONG QQ, LI S, LOU WY, FAN DD, LI Y, YANG SH, GONZALEZ R, FEI Q. A novel nutritional induction strategy flexibly switching the biosynthesis of food-like products from methane by a methanotrophic bacterium[J]. Green Chemistry, 2024, 26: 7048-7058.
    [6] 侯千姿, 郭心怡, 焦子悦, 费强. 好氧性嗜甲烷菌生物能供给与调控的研究进展[J]. 化工进展, 2023, 42(1): 86-93. HOU QZ, GUO XY, JIAO ZY, FEI Q. Research progress on energy supply and regulation of aerobic methanotrophs[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 86-93(in Chinese).
    [7] 贾德臣, 姜卫红, 顾阳. 食气梭菌的研究进展[J]. 微生物学通报, 2019, 46(2): 374-387. JIA DC, JIANG WH, GU Y. Research progresses in gas-fermenting clostridia[J]. Microbiology China, 2019, 46(2): 374-387(in Chinese).
    [8] FEI Q, GUARNIERI MT, TAO L, LAURENS LML, DOWE N, PIENKOS PT. Bioconversion of natural gas to liquid fuel: opportunities and challenges[J]. Biotechnology Advances, 2014, 32(3): 596-614.
    [9] ZHANG CY, FU RZ, KANG LX, MA YQ, FAN DD, FEI Q. An upcycling bioprocess for sustainable aviation fuel production from food waste-derived greenhouse gases: life cycle assessment and techno-economic analysis[J]. Chemical Engineering Journal, 2024, 486: 150242.
    [10] MARELLA ER, HOLKENBRINK C, SIEWERS V, BORODINA I. Engineering microbial fatty acid metabolism for biofuels and biochemicals[J]. Current Opinion in Biotechnology, 2018, 50: 39-46.
    [11] COMESAÑA-GÁNDARA B, GARCÍA-DEPRAECT O, SANTOS-BENEIT F, BORDEL S, LEBRERO R, MUÑOZ R. Recent trends and advances in biogas upgrading and methanotrophs-based valorization[J]. Chemical Engineering Journal Advances, 2022, 11: 100325.
    [12] 郭树奇, 焦子悦, 费强. 基于化学品生物合成的嗜甲烷菌人工细胞构建及应用进展[J]. 合成生物学, 2021, 2(6): 1017-1029. GUO SQ, JIAO ZY, FEI Q. Progress in construction and applications of methanotrophic cell factory for chemicals biosynthesis[J]. Synthetic Biology Journal, 2021, 2(6): 1017-1029(in Chinese).
    [13] DEMIDENKO A, AKBERDIN IR, ALLEMANN M, ALLEN EE, KALYUZHNAYA MG. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)[J]. Frontiers in Microbiology, 2017, 7: 2167.
    [14] DONG T, FEI Q, GENELOT M, SMITH H, LAURENS LML, WATSON MJ, PIENKOS PT. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense[J]. Energy Conversion and Management, 2017, 140: 62-70.
    [15] HENARD CA, SMITH HK, GUARNIERI MT. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst[J]. Metabolic Engineering, 2017, 41: 152-158.
    [16] FEI Q, PURI AW, SMITH H, DOWE N, PIENKOS PT. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense[J]. Biotechnology for Biofuels, 2018, 11: 129.
    [17] GILMAN A, LAURENS LM, PURI AW, CHU F, PIENKOS PT, LIDSTROM ME. Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1[J]. Microbial Cell Factories, 2015, 14: 182.
    [18] BURDETTE MD. Production of biodiesel-like components by the type I methanotroph Methylomonas methanica[D]. Clemson: Master’s Thesis of Clemson University, 2013.
    [19] WIJFFELS RH, BARBOSA MJ. An outlook on microalgal biofuels[J]. Science, 2010, 329(5993): 796-799.
    [20] WANG L, CHEN LY, YANG SH, TAN XM. Photosynthetic conversion of carbon dioxide to oleochemicals by cyanobacteria: recent advances and future perspectives[J]. Frontiers in Microbiology, 2020, 11: 634.
    [21] 崔金玉, 张爱娣, 栾国栋, 吕雪峰. 微藻光驱固碳合成技术的发展现状与未来展望[J]. 合成生物学, 2022, 3(5): 884-900. CUI JY, ZHANG AD, LUAN GD, LYU XF. Engineering microalgae for photosynthetic biosynthesis: progress and prospect[J]. Synthetic Biology Journal, 2022, 3(5): 884-900(in Chinese).
    [22] KAISER BK, CARLETON M, HICKMAN JW, MILLER C, LAWSON D, BUDDE M, WARRENER P, PAREDES A, MULLAPUDI S, NAVARRO P, CROSS F, ROBERTS JM. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products[J]. PLoS One, 2013, 8(3): e58307.
    [23] SU HF, LIN JF. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 109.
    [24] GU HY, JINKERSON RE, DAVIES FK, SISSON LA, SCHNEIDER PE, POSEWITZ MC. Modulation of medium-chain fatty acid synthesis in Synechococcus sp. PCC 7002 by replacing FabH with a Chaetoceros ketoacyl-ACP synthase[J]. Frontiers in Plant Science, 2016, 7: 690.
    [25] RUFFING AM. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 17.
    [26] LIU XY, SHENG J, CURTISS R 3rd. Fatty acid production in genetically modified cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 6899-6904.
    [27] KATO A, TAKATANI N, USE K, UESAKA K, IKEDA K, CHANG YJ, KOJIMA K, AICHI M, IHARA K, NAKAHIGASHI K, MAEDA SI, OMATA T. Identification of a cyanobacterial RND-type efflux system involved in export of free fatty acids[J]. Plant & Cell Physiology, 2015, 56(12): 2467-2477.
    [28] YUNUS IS, WANG ZX, SATTAYAWAT P, MULLER J, ZEMICHAEL FW, HELLGARDT K, JONES PR. Improved bioproduction of 1-octanol using engineered Synechocystis sp. PCC 6803[J]. ACS Synthetic Biology, 2021, 10(6): 1417-1428.
    [29] KIZAWA A, KAWAHARA A, TAKASHIMA K, TAKIMURA Y, NISHIYAMA Y, HIHARA Y. The LexA transcription factor regulates fatty acid biosynthetic genes in the cyanobacterium Synechocystis sp. PCC 6803[J]. The Plant Journal: for Cell and Molecular Biology, 2017, 92(2): 189-198.
    [30] KAWAHARA A, SATO Y, SAITO Y, KANEKO Y, TAKIMURA Y, HAGIHARA H, HIHARA Y. Free fatty acid production in the cyanobacterium Synechocystis sp. PCC 6803 is enhanced by deletion of the cyAbrB2 transcriptional regulator[J]. Journal of Biotechnology, 2016, 220: 1-11.
    [31] SCHIRMER A, RUDE MA, LI XZ, POPOVA E, del CARDAYRE SB. Microbial biosynthesis of alkanes[J]. Science, 2010, 329(5991): 559-562.
    [32] WANG WH, LIU XF, LU XF. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes[J]. Biotechnology for Biofuels, 2013, 6(1): 69.
    [33] MENDEZ-PEREZ D, BEGEMANN MB, PFLEGER BF. Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002[J]. Applied and Environmental Microbiology, 2011, 77(12): 4264-4267.
    [34] YUNUS IS, WICHMANN J, WÖRDENWEBER R, LAUERSEN KJ, KRUSE O, JONES PR. Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel[J]. Metabolic Engineering, 2018, 49: 201-211.
    [35] YUNUS IS, ANFELT J, SPORRE E, MIAO R, HUDSON EP, JONES PR. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria[J]. Metabolic Engineering, 2022, 72: 14-23.
    [36] ZHOU YD, REMÓN J, JIANG ZC, MATHARU AS, HU CW. Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: a review[J]. Green Energy & Environment, 2023, 8(3): 722-743.
    [37] TAN XM, YAO L, GAO QQ, WANG WH, QI FX, LU XF. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria[J]. Metabolic Engineering, 2011, 13(2): 169-176.
    [38] QI FX, YAO L, TAN XM, LU XF. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp.[J]. Biotechnology Letters, 2013, 35(10): 1655-1661.
    [39] YAO L, QI FX, TAN XM, LU XF. Improved production of fatty alcohols in cyanobacteria by metabolic engineering[J]. Biotechnology for Biofuels, 2014, 7: 94.
    [40] YUNUS IS, JONES PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols[J]. Metabolic Engineering, 2018, 49: 59-68.
    [41] LEE HJ, CHOI J, LEE SM, UM Y, SIM SJ, KIM Y, WOO HM. Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1087-1092.
    [42] LEE YY, TANG TK, PHUAH ET, TAN CP, WANG Y, LI Y, CHEONG LZ, LAI OM. Production, safety, health effects and applications of diacylglycerol functional oil in food systems: a review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2509-2525.
    [43] LEE WJ, ZHANG Z, LAI OM, TAN CP, WANG Y. Diacylglycerol in food industry: synthesis methods, functionalities, health benefits, potential risks and drawbacks[J]. Trends in Food Science & Technology, 2020, 97: 114-125.
    [44] ZHU Z, YUAN GZ, FAN XR, FAN Y, YANG M, YIN YL, LIU J, LIU Y, CAO XP, TIAN J, XUE S. The synchronous TAG production with the growth by the expression of chloroplast transit peptide-fused ScPDAT in Chlamydomonas reinhardtii[J]. Biotechnology for Biofuels, 2018, 11: 156.
    [45] NIU YF, ZHANG MH, LI DW, YANG WD, LIU JS, BAI WB, LI HY. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum[J]. Marine Drugs, 2013, 11(11): 4558-4569.
    [46] MUÑOZ CF, WEUSTHUIS RA, D’ADAMO S, WIJFFELS RH. Effect of single and combined expression of lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, and diacylglycerol acyltransferase on lipid accumulation and composition in Neochloris oleoabundans[J]. Frontiers in Plant Science, 2019, 10: 1573.
    [47] ROESSLER PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency[J]. Archives of Biochemistry and Biophysics, 1988, 267(2): 521-528.
    [48] LIANG MH, WANG L, WANG QM, ZHU JH, JIANG JG. High-value bioproducts from microalgae: strategies and progress[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(15): 2423-2441.
    [49] OSADA K, MAEDA Y, YOSHINO T, NOJIMA D, BOWLER C, TANAKA T. Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris[J]. Algal Research, 2017, 23: 126-134.
    [50] JEON S, KOH HG, CHO JM, KANG NK, CHANG YK. Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme[J]. Algal Research, 2021, 54: 102218.
    [51] KUMAR A, BERA S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation[J]. Bioresource Technology Reports, 2020, 12: 100584.
    [52] LIANG JB, IQBAL S, WEN F, TONG MM, LIU JH. Phosphorus-induced lipid class alteration revealed by lipidomic and transcriptomic profiling in oleaginous microalga Nannochloropsis sp. PJ12[J]. Marine Drugs, 2019, 17(9): 519.
    [53] JIN XJ, GONG SQ, YANG BJ, WU JY, LI T, WU HL, WU HB, XIANG WZ. Transcriptomic analysis for phosphorus limitation-induced β-glucans accumulation in Chlorella sorokiniana SCSIO 46784 during the early phase of growth[J]. Algal Research, 2021, 54: 102208.
    [54] PANAHI Y, YARI KHOSROUSHAHI A, SAHEBKAR A, HEIDARI HR. Impact of cultivation condition and media content on Chlorella vulgaris composition[J]. Advanced Pharmaceutical Bulletin, 2019, 9(2): 182-194.
    [55] 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. SUN H, LIU J. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae[J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160(in Chinese).
    [56] MALTSEV Y, MALTSEVA K, KULIKOVSKIY M, MALTSEVA S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition[J]. Biology, 2021, 10(10): 1060.
    [57] SHIN H, HONG SJ, YOO C, HAN MA, LEE H, CHOI HK, CHO S, LEE CG, CHO BK. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae[J]. Scientific Reports, 2016, 6: 37770.
    [58] XING GL, YUAN HL, YANG JS, LI JY, GAO QX, LI WL, WANG ET. Integrated analyses of transcriptome, proteome and fatty acid profilings of the oleaginous microalga Auxenochlorella protothecoides UTEX 2341 reveal differential reprogramming of fatty acid metabolism in response to low and high temperatures[J]. Algal Research, 2018, 33: 16-27.
    [59] MANDOTRA SK, KUMAR P, SUSEELA MR, NAYAKA S, RAMTEKE PW. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities[J]. Bioresource Technology, 2016, 201: 222-229.
    [60] AFRIN S, KHAN MRI, ZHANG WY, WANG YS, ZHANG WW, HE L, MA G. Membrane-located expression of thioesterase from Acinetobacter baylyi enhances free fatty acid production with decreased toxicity in Synechocystis sp. PCC 6803[J]. Frontiers in Microbiology, 2018, 9: 2842.
    [61] KATO A, TAKATANI N, IKEDA K, MAEDA SI, OMATA T. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus[J]. Biotechnology for Biofuels, 2017, 10: 141.
    [62] ORTIZ MONTOYA EY, CASAZZA AA, ALIAKBARIAN B, PEREGO P, CONVERTI A, de CARVALHO JCM. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations[J]. Biotechnology Progress, 2014, 30(4): 916-922.
    [63] KNOOT CJ, PAKRASI HB. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002[J]. Scientific Reports, 2019, 9: 1360.
    [64] PREMARATNE M, LIYANAARACHCHI VC, NISHSHANKA GKSH, NIMARSHANA PHV, ARIYADASA TU. Nitrogen-limited cultivation of locally isolated Desmodesmus sp. for sequestration of CO2 from simulated cement flue gas and generation of feedstock for biofuel production[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105765.
    [65] FLAIZ M, SOUSA DZ. Accelerate acetogenic bioproduction: acetogens as sustainable producers of biocommodities[J]. Current Opinion in Systems Biology, 2024, 37: 100500.
    [66] DEBABOV VG. Acetogens: biochemistry, bioenergetics, genetics, and biotechnological potential[J]. Microbiology, 2021, 90(3): 273-297.
    [67] WIRTH S, DÜRRE P. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria[J]. Metabolic Engineering, 2021, 66: 296-307.
    [68] LIU C, LUO G, LIU HP, YANG ZY, ANGELIDAKI I, O-THONG S, LIU GQ, ZHANG SC, WANG W. CO as electron donor for efficient medium chain carboxylate production by chain elongation: microbial and thermodynamic insights[J]. Chemical Engineering Journal, 2020, 390: 124577.
    [69] LAUER I, PHILIPPS G, JENNEWEIN S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO2 and H2[J]. Microbial Cell Factories, 2022, 21(1): 85.
    [70] PEREZ JM, RICHTER H, LOFTUS SE, ANGENENT LT. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation[J]. Biotechnology and Bioengineering, 2013, 110(4): 1066-1077.
    [71] LIU K, ATIYEH HK, STEVENSON BS, TANNER RS, WILKINS MR, HUHNKE RL. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols[J]. Bioresource Technology, 2014, 152: 337-346.
    [72] DYKSTRA JC, van OORT J, YAZDI AT, VOSSEN E, PATINIOS C, van der OOST J, SOUSA DZ, KENGEN SWM. Metabolic engineering of Clostridium autoethanogenum for ethyl acetate production from CO[J]. Microbial Cell Factories, 2022, 21(1): 243.
    [73] FERNÁNDEZ-NAVEIRA Á, VEIGA MC, KENNES C. Effect of pH control on the anaerobic H-B-E fermentation of syngas in bioreactors[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1178-1185.
    [74] RAMIÓ-PUJOL S, GANIGUÉ R, BAVÑERAS L, COLPRIM J. Incubation at 25℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303.
    [75] PHILLIPS JR, ATIYEH HK, TANNER RS, TORRES JR, SAXENA J, WILKINS MR, HUHNKE RL. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques[J]. Bioresource Technology, 2015, 190: 114-121.
    [76] OH HJ, GONG G, AHN JH, KO JK, LEE SM, UM Y. Effective hexanol production from carbon monoxide using extractive fermentation with Clostridium carboxidivorans P7[J]. Bioresource Technology, 2023, 367: 128201.
    [77] de ARAÜJO CAVALCANTE W, LEITÁO RC, GEHRING TA, ANGENENT LT, SANTAELLA ST. Anaerobic fermentation for n-caproic acid production: a review[J]. Process Biochemistry, 2017, 54: 106-119.
    [78] RICHTER H, MOLITOR B, DIENDER M, SOUSA DZ, ANGENENT LT. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction[J]. Frontiers in Microbiology, 2016, 7: 1773.
    [79] FERNÁNDEZ-BLANCO C, VEIGA MC, KENNES C. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri[J]. Journal of Environmental Management, 2022, 302(Pt A): 113992.
    [80] 叶伟, 李芮, 姜卫红, 顾阳. 二氧化碳微生物转化与体外酶催化体系研究进展[J]. 合成生物学, 2023, 4(6): 1223-1245. YE W, LI R, JIANG WH, GU Y. Microbial conversion and in vitro enzymatic catalysis for carbon dioxide utilization: a review[J]. Synthetic Biology Journal, 2023, 4(6): 1223-1245(in Chinese).
    [81] BANG J, HWANG CH, AHN JH, LEE JA, LEE SY. Escherichia coli is engineered to grow on CO2 and formic acid[J]. Nature Microbiology, 2020, 5: 1459-1463.
    [82] GASSLER T, SAUER M, GASSER B, EGERMEIER M, TROYER C, CAUSON T, HANN S, MATTANOVICH D, STEIGER MG. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2[J]. Nature Biotechnology, 2020, 38: 210-216.
    [83] QIN N, LI LY, WAN XZ, JI X, CHEN Y, LI CK, LIU P, ZHANG YJ, YANG WJ, JIANG JF, XIA JY, SHI SB, TAN TW, NIELSEN J, CHEN Y, LIU ZH. Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast[J]. Nature Communications, 2024, 15: 1591.
    [84] JIN S, JEON Y, JEON MS, SHIN J, SONG Y, KANG S, BAE JY, CHO S, LEE JK, KIM DR, CHO BK. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118.
    [85] ZHENG TT, ZHANG ML, WU LH, GUO SY, LIU XJ, ZHAO JK, XUE WQ, LI JW, LIU CX, LI X, JIANG Q, BAO J, ZENG J, YU T, XIA C. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5: 388-396.
    [86] ROBLES-IGLESIAS R, NICAUD JM, VEIGA MC, KENNES C. Integrated fermentative process for lipid and β-carotene production from acetogenic syngas fermentation using an engineered oleaginous Yarrowia lipolytica yeast[J]. Bioresource Technology, 2023, 389: 129815.
    [87] ROBLES-IGLESIAS R, FERNÁNDEZ-BLANCO C, NICAUD JM, VEIGA MC, KENNES C. Unlocking the potential of one-carbon gases (CO2 CO) for concomitant bioproduction of β-carotene and lipids[J]. Ecotoxicology and Environmental Safety, 2024, 271: 115950.
    [88] LIANG BB, FU RZ, MA YQ, HU LZ, FEI Q, XING XH. Turning C1-gases to isobutanol towards great environmental and economic sustainability via innovative biological routes: two birds with one stone[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 107.
    [89] 朱佛代, 杨福胜, 张锋, 代敏, 费强. 甲烷生物转化膜反应器的CFD模拟[J]. 高校化学工程学报, 2019, 33(3): 603-610. ZHU FD, YANG FS, ZHANG F, DAI M, FEI Q. CFD simulation of a membrane bioreactor for methane bioconversion[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 603-610(in Chinese).
    [90] 焦子悦, 黄小涵, 郭树奇, 王新宇, 钟超, 费强. 微生物固碳的电子供给策略研究进展[J]. 生物工程学报, 2022, 38(7): 2396-2409. JIAO ZY, HUANG XH, GUO SQ, WANG XY, ZHONG C, FEI Q. Electron supply strategies for microbial carbon fixation: a review[J]. Chinese Journal of Biotechnology, 2022, 38(7): 2396-2409(in Chinese).
    [91] WEN DH, FANG WW, LIU YM, TU T. Valorization of carbon dioxide with alcohols[J]. Chinese Chemical Letters, 2024, 35(7): 109394.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王薇廷,焦子悦,侯千姿,郭树奇,费强. 一碳气体生物转化合成油脂类化学品的研究进展[J]. 生物工程学报, 2024, 40(9): 2866-2883

复制
分享
文章指标
  • 点击次数:207
  • 下载次数: 840
  • HTML阅读次数: 706
  • 引用次数: 0
历史
  • 收稿日期:2024-02-05
  • 最后修改日期:2024-04-24
  • 在线发布日期: 2024-09-24
  • 出版日期: 2024-09-25
文章二维码
您是第6508135位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司