植物CDPK在响应逆境胁迫中的作用及机制
作者:
基金项目:

国家自然科学基金(32360483,32160466);甘肃省自然科学基金重点项目(23JRRA764)


Functions and mechanisms of CDPKs in plant responses to abiotic stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钙依赖性蛋白激酶(calcium-dependent protein kinase,CDPK/CPK)是一类Ca2+敏感的Ser/Thr蛋白激酶,在植物生长发育和逆境胁迫响应中发挥重要作用。CDPK能够迅速感知细胞内瞬时Ca2+信号的变化,识别并磷酸化特异性底物,从而将Ca2+信号向下游传递并级联放大,广泛参与干旱、盐碱和伤害应激等逆境胁迫,调控植物生长发育以及相关基因表达、离子通道和气孔运动等。CDPK的自磷酸化会影响其酶活性以及底物的选择性。CDPK具有与多种底物结合并磷酸化的能力,除了参与呼吸暴发氧化酶同源物(respiratory burst oxidase homolog,RBOH)、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、植物激素等信号通路,CDPK还可以与14-3-3蛋白结合,调控植物应对逆境胁迫和促进生长发育。本研究综述了植物CDPK的发现、结构、分类及其在逆境胁迫响应中的作用等方面的研究成果,并对其未来研究方向进行展望,为农作物抗逆性遗传改良提供了基因资源和理论依据。

    Abstract:

    Calcium-dependent protein kinases (CDPKs/CPKs) are members of the Ca2+-sensitive Ser/Thr protein kinase family and play a crucial role in plant growth and development and responses to abiotic stress. CDPKs are capable of rapidly sensing changes in intracellular Ca2+ signals and recognizing and phosphorylating specific substrates, thereby transmitting and amplifying Ca2+ signal cascades downstream. They are involved in plant responses to stress conditions such as drought, saline-alkali stress, and injuries and regulate plant growth and development, gene expression, ion channel activity, and stomatal movement. The autophosphorylation of CDPKs can affect their activities and substrate specificity. CDPKs have the ability to bind to and phosphorylate multiple substrates. In addition to participating in respiratory burst oxidase homolog (RBOH), mitogen-activated protein kinase (MAPK), and plant hormone signaling pathways, CDPKs can also bind to 14-3-3 proteins, which enables the regulation of plant responses to stress and promotes plant growth and development. This paper summarized the research findings on the discovery, structure, classification, and roles of CDPKs in plant responses to stress and proposed the future research directions, aiming to provide the genetic resources and a theoretical basis for improving the stress tolerance of crops.

    参考文献
    [1] ZANDALINAS SI, MITTLER R. Plant responses to multifactorial stress combination[J]. The New Phytologist, 2022, 234(4): 1161-1167.
    [2] BANDURSKA H. Drought stress responses: coping strategy and resistance[J]. Plants, 2022, 11(7): 922.
    [3] PAES DE MELO B, CARPINETTI PA, FRAGA OT, RODRIGUES-SILVA PL, FIORESI VS, de CAMARGOS LF, FERREIRA MFDS. Abiotic stresses in plants and their markers: a practice view of plant stress responses and programmed cell death mechanisms[J]. Plants, 2022, 11(9): 1100.
    [4] WANG CF, HAN GL, YANG ZR, LI YX, WANG BS. Plant salinity sensors: current understanding and future directions[J]. Frontiers in Plant Science, 2022, 13: 859224.
    [5] LIU X, QUAN WL, BARTELS D. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview[J]. Planta, 2022, 255(2): 45.
    [6] PATRA N, HARIHARAN S, GAIN H, MAITI MK, DAS A, BANERJEE J. TypiCal but DeliCate Ca2+: dissecting the essence of calcium signaling network as a robust response coordinator of versatile abiotic and biotic stimuli in plants[J]. Frontiers in Plant Science, 2021, 12: 752246.
    [7] DONG QY, WALLRAD L, ALMUTAIRI BO, KUDLA J. Ca2+ signaling in plant responses to abiotic stresses[J]. Journal of Integrative Plant Biology, 2022, 64(2): 287-300.
    [8] KUDLA J, BECKER D, GRILL E, HEDRICH R, HIPPLER M, KUMMER U, PARNISKE M, ROMEIS T, SCHUMACHER K. Advances and current challenges in calcium signaling[J]. The New Phytologist, 2018, 218(2): 414-431.
    [9] ZHANG HF, LIU WZ, ZHANG YP, DENG M, NIU FF, YANG B, WANG XL, WANG BY, LIANG WW, DEYHOLOS MK, JIANG YQ. Identification, expression and interaction analyses of calcium- dependent protein kinase (CPK) genes in canola (Brassica napus L.)[J]. BMC Genomics, 2014, 15: 211.
    [10] ASANO T, HAYASHI N, KIKUCHI S, OHSUGI R. CDPK-mediated abiotic stress signaling[J]. Plant Signaling & Behavior, 2012, 7(7): 817-821.
    [11] LI MM, CHEN XH, HUANG WQ, LI YN, LIU Q, YAN W, GUO CH, SHU YJ. Genome-wide analysis of the CDPK gene family and their important roles response to cold stress in white clover[J]. Plant Signaling & Behavior, 2023, 18(1): 2213924.
    [12] SUEN KL, CHOI JH. Isolation and sequence analysis of a cDNA clone for a carrot calcium-dependent protein kinase: homology to calcium/calmodulin- dependent protein kinases and to calmodulin[J]. Plant Molecular Biology, 1991, 17(4): 581-590.
    [13] SILAMPARASAN D, CHANG IF, JINN TL. Calcium-dependent protein kinase CDPK16 phosphorylates serine-856 of glutamate receptor-like GLR3.6 protein leading to salt-responsive root growth in Arabidopsis[J]. Frontiers in Plant Science, 2023, 14: 1093472.
    [14] HARPER JF, SUSSMAN MR, SCHALLER GE, PUTNAM-EVANS C, CHARBONNEAU H, HARMON AC. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin[J]. Science, 1991, 252(5008): 951-954.
    [15] YIP DELORMEL T, BOUDSOCQ M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana[J]. The New Phytologist, 2019, 224(2): 585-604.
    [16] HU CH, LI BB, CHEN P, SHEN HY, XI WG, ZHANG Y, YUE ZH, WANG HX, MA KS, LI LL, CHEN KM. Identification of CDPKs involved in TaNOX7 mediated ROS production in wheat[J]. Frontiers in Plant Science, 2023, 13: 1108622.
    [17] KHALID MHB, RAZA MA, YU HQ, KHAN I, SUN FA, FENG LY, QU JT, FU FL, LI WC. Expression, subcellular localization, and interactions of CPK family genes in maize[J]. International Journal of Molecular Sciences, 2019, 20(24): 6173.
    [18] HU ZJ, LV XZ, XIA XJ, ZHOU J, SHI K, YU JQ, ZHOU YH. Genome-wide identification and expression analysis of calcium-dependent protein kinase in tomato[J]. Frontiers in Plant Science, 2016, 7: 469.
    [19] CRIZEL RL, PERIN EC, VIGHI IL, WOLOSKI R, SEIXAS A, Da SILVA PINTO L, ROMBALDI CV, GALLI V. Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria×ananassa[J]. Scientific Reports, 2020, 10: 11040.
    [20] LI X, ZHAO LM, ZHANG H, LIU QC, ZHAI H, ZHAO N, GAO SP, HE SZ. Genome-wide identification and characterization of CDPK family reveal their involvements in growth and development and abiotic stress in sweet potato and its two diploid relatives[J]. International Journal of Molecular Sciences, 2022, 23(6): 3088.
    [21] WEN F, YE F, XIAO ZL, LIAO L, LI TJ, JIA ML, LIU XS, WU XZ. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon[J]. BMC Genomics, 2020, 21(1): 53.
    [22] XIAO XH, YANG M, SUI JL, QI JY, FANG YJ, HU SN, TANG CR. The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression[J]. FEBS Open Bio, 2016, 7(1): 4-24.
    [23] LI MY, HU W, REN LC, JIA CH, LIU JH, MIAO HX, GUO AP, XU BY, JIN ZQ. Identification, expression, and interaction network analyses of the CDPK gene family reveal their involvement in the development, ripening, and abiotic stress response in banana[J]. Biochemical Genetics, 2020, 58(1): 40-62.
    [24] DEEPIKA D, PODDAR N, KUMAR S, SINGH A. Molecular characterization reveals the involvement of calcium dependent protein kinases in abiotic stress signaling and development in chickpea (Cicer arietinum)[J]. Frontiers in Plant Science, 2022, 13: 831265.
    [25] YU TF, ZHAO WY, FU JD, LIU YW, CHEN M, ZHOU YB, MA YZ, XU ZS, XI YJ. Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress[J]. Frontiers in Plant Science, 2018, 9: 651.
    [26] GAO W, XU FC, GUO DD, ZHAO JR, LIU J, GUO YW, SINGH PK, MA XN, LONG L, BOTELLA JR, SONG CP. Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress[J]. BMC Plant Biology, 2018, 18(1): 15.
    [27] ZHAO PC, LIU YJ, KONG WY, JI JY, CAI TY, GUO ZF. Genome-wide identification and characterization of calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in Medicago truncatula[J]. International Journal of Molecular Sciences, 2021, 22(3): 1044.
    [28] YANG Q, HUANG Y, CUI L, GAN CX, QIU ZM, YAN CH, DENG XH. Genome-wide identification of the CDPK gene family and their involvement in taproot cracking in radish[J]. International Journal of Molecular Sciences, 2023, 24(20): 15059.
    [29] LI YY, ZHANG HX, LIANG SB, CHEN XL, LIU JY, ZHANG Y, WANG AX. Identification of CDPK gene family in Solanum habrochaites and its function analysis under stress[J]. International Journal of Molecular Sciences, 2022, 23(8): 4227.
    [30] SHI GZ, ZHU XX. Genome-wide identification and functional characterization of CDPK gene family reveal their involvement in response to drought stress in Gossypium barbadense[J]. PeerJ, 2022, 10: e12883.
    [31] ZHANG XM, LIU LX, SU ZM, TANG J, SHEN ZJ, GAO GF, YI Y, ZHENG HL. Expression analysis of calcium-dependent protein kinases (CDPKs) superfamily genes in Medicago lupulina in response to high calcium, carbonate and drought[J]. Plant and Soil, 2019, 441(1): 219-234.
    [32] ZHU LP, ZHENG BW, SONG WY, LI HB, JIN X. Evolutionary analysis of calcium-dependent protein kinase in five Asteraceae species[J]. Plants, 2019, 9(1): 32.
    [33] ZHAO LY, XIE B, HOU YY, ZHAO YQ, ZHENG YH, JIN P. Genome-wide identification of the CDPK gene family reveals the CDPK-RBOH pathway potential involved in improving chilling tolerance in peach fruit[J]. Plant Physiology and Biochemistry: PPB, 2022, 191: 10-19.
    [34] ZHANG M, LIU YH, HE Q, CHAI MN, HUANG YM, CHEN FQ, WANG XM, LIU YQ, CAI HY, QIN Y. Genome-wide investigation of calcium-dependent protein kinase gene family in pineapple: evolution and expression profiles during development and stress[J]. BMC Genomics, 2020, 21(1): 72.
    [35] AHMED B, ALAM M, HASAN F, EMDAD EM, ISLAM S, RAHMAN N. Jute CDPK genes and their role in stress tolerance and fiber development: a genome-wide bioinformatic investigation of Chorchorus capsularis and C. olitorius[J]. Plant Gene, 2020, 24: 100252.
    [36] WU P, WANG WL, DUAN WK, LI Y, HOU XL. Comprehensive analysis of the CDPK-SnRK superfamily genes in Chinese cabbage and its evolutionary implications in plants[J]. Frontiers in Plant Science, 2017, 8: 162.
    [37] ORMANCEY M, THULEAU P, MAZARS C, COTELLE V. CDPKs and 14-3-3 proteins: emerging duo in signaling[J]. Trends in Plant Science, 2017, 22(3): 263-272.
    [38] WEI CH, ZHANG RM, YANG XZ, ZHU CY, LI H, ZHANG Y, MA JX, YANG JQ, ZHANG X. Comparative analysis of calcium-dependent protein kinase in cucurbitaceae and expression studies in watermelon[J]. International Journal of Molecular Sciences, 2019, 20(10): 2527.
    [39] HARMON AC, GRIBSKOV M, GUBRIUM E, HARPER JF. The CDPK superfamily of protein kinases[J]. The New Phytologist, 2001, 151(1): 175-183.
    [40] OH MH, WU X, KIM HS, HARPER JF, ZIELINSKI RE, CLOUSE SD, HUBER SC. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity[J]. FEBS Letters, 2012, 586(23): 4070-4075.
    [41] BENDER KW, BLACKBURN RK, MONAGHAN J, DERBYSHIRE P, MENKE FLH, ZIPFEL C, GOSHE MB, ZIELINSKI RE, HUBER SC. Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28(CPK28)[J]. The Journal of Biological Chemistry, 2017, 292(10): 3988-4002.
    [42] ITO T, ISHIDA S, OE S, FUKAZAWA J, TAKAHASHI Y. Autophosphorylation affects substrate-binding affinity of tobacco Ca2+-dependent protein kinase 1[J]. Plant Physiology, 2017, 174(4): 2457-2468.
    [43] KILBURN R, GERDIS SA, SHE YM, SNEDDEN WA, PLAXTON WC. Autophosphorylation inhibits RcCDPK1, a dual-specificity kinase that phosphorylates bacterial-type phosphoenolpyruvate carboxylase in castor oil seeds[J]. Plant and Cell Physiology, 2022, 63(5): 683-698.
    [44] WANG WH, ZHANG HF, WEI XY, YANG L, YANG B, ZHANG L, LI J, JIANG YQ. Functional characterization of calcium-dependent protein kinase (CPK) 2 gene from oilseed rape (Brassica napus L.) in regulating reactive oxygen species signaling and cell death control[J]. Gene, 2018, 651: 49-56.
    [45] PAN GY, ZHANG HF, CHEN BY, GAO SD, YANG B, JIANG YQ. Rapeseed calcium-dependent protein kinase CPK6L modulates reactive oxygen species and cell death through interacting and phosphorylating RBOHD[J]. Biochemical and Biophysical Research Communications, 2019, 518(4): 719-725.
    [46] CUI X, ZHAO PY, LIANG WW, CHENG Q, MU BB, NIU FF, YAN JL, LIU CL, XIE H, KAV NNV, DEYHOLOS MK, JIANG YQ, YANG B. A rapeseed WRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synthesis-related genes[J]. Journal of Agricultural and Food Chemistry, 2020, 68(28): 7348-7359.
    [47] LI S, HAN XF, YANG LY, DENG XX, WU HJ, ZHANG MM, LIU YD, ZHANG SQ, XU J. Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana[J]. Plant, Cell & Environment, 2018, 41(1): 134-147.
    [48] BORKIEWICZ L, POLKOWSKA-KOWALCZYK L, CIEŚLA J, SOWIŃSKI P, JOŃCZYK M, RYMASZEWSKI W, SZYMAŃSKA KP, JAŹWIEC R, MUSZYŃSKA G, SZCZEGIELNIAK J. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem Ⅱ[J]. Physiologia Plantarum, 2020, 168(1): 38-57.
    [49] DING YF, CAO JM, NI L, ZHU Y, ZHANG AY, TAN MP, JIANG MY. ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize[J]. Journal of Experimental Botany, 2013, 64(4): 871-884.
    [50] DUBROVINA AS, ALEYNOVA OA, MANYAKHIN AY, KISELEV KV. The role of calcium-dependent protein kinase genes CPK16, CPK25, CPK30, and CPK32 in stilbene biosynthesis and the stress resistance of grapevine Vitis amurensis rupr[J]. Applied Biochemistry and Microbiology, 2018, 54(4): 410-417.
    [51] GEIGER D, MAIERHOFER T, AL-RASHEID KAS, SCHERZER S, MUMM P, LIESE A, ACHE P, WELLMANN C, MARTEN I, GRILL E, ROMEIS T, HEDRICH R. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1[J]. Science Signaling, 2011, 4(173): ra32.
    [52] WANG Y, LI Y, CHENG F, ZHANG SP, ZHENG Y, LI Y, LI XB. Comparative phosphoproteomic analysis reveals that phosphorylation of sucrose synthase GhSUS2 by Ca2+-dependent protein kinases GhCPK84/93 affects cotton fiber development[J]. Journal of Experimental Botany, 2023, 74(6): 1836-1852.
    [53] KILBURN R, FEDOSEJEVS ET, MEHTA D, SOLEIMANI F, GHAHREMANI M, MONAGHAN J, THELEN JJ, UHRIG RG, SNEDDEN WA, PLAXTON WC. Substrate profiling of the Arabidopsis Ca2+-dependent protein kinase AtCPK4 and its Ricinus communis ortholog RcCDPK1[J]. Plant Science, 2023, 331: 111675.
    [54] ZHANG HF, LIU DY, YANG B, LIU WZ, MU BB, SONG HX, CHEN BY, LI Y, REN DT, DENG HQ, JIANG YQ. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors[J]. Journal of Experimental Botany, 2020, 71(1): 188-203.
    [55] LIU J, CHEN X, WANG S, WANG YY, OUYANG YJ, YAO Y, LI RM, FU SP, HU XW, GUO JC. MeABL5, an ABA insensitive 5-like basic leucine zipper transcription factor, positively regulates MeCWINV3 in cassava (Manihot esculenta crantz)[J]. Frontiers in Plant Science, 2019, 10: 772.
    [56] 王伟欢, 刘舞贞, 杨博, 张翰风, 邓民, 李竞, 江元清. 甘蓝型油菜钙依赖蛋白激酶6(BnaCPK6)的定位与互作蛋白分析[J]. 基因组学与应用生物学, 2019, 38(5): 2104-2109.WANG WH, LIU WZ, YANG B, ZHANG HF, DENG M, LI J, JIANG YQ. Analysis of localization and interacting proteins of calcium-dependent protein kinase 6(BnaCPK6) in Brassica napus[J]. Genomics and Applied Biology, 2019, 38(5): 2104-2109(in Chinese).
    [57] KAWAMOTO N, SASABE M, ENDO M, MACHIDA Y, ARAKI T. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation[J]. Scientific Reports, 2015, 5: 8341.
    [58] ZHANG ZQ, FU DL, SUN ZH, JU CF, MIAO CC, WANG ZQ, XIE DX, MA L, GONG ZZ, WANG C. Tonoplast-associated calcium signaling regulates manganese homeostasis in Arabidopsis[J]. Molecular Plant, 2021, 14(5): 805-819.
    [59] FU DL, ZHANG ZQ, WALLRAD L, WANG ZQ, HÖLLER S, JU CF, SCHMITZ-THOM I, HUANG PP, WANG L, PEITER E, KUDLA J, WANG C. Ca2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2204574119.
    [60] LIU KH, NIU YJ, KONISHI M, WU Y, DU H, CHUNG HS, LI L, BOUDSOCQ M, McCORMACK M, MAEKAWA S, ISHIDA T, ZHANG C, SHOKAT K, YANAGISAWA S, SHEEN J. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545: 311-316.
    [61] CHEN GD, WANG L, CHEN Q, QI KJ, YIN H, CAO P, TANG C, WU X, ZHANG SL, WANG P, WU JY. PbrSLAH3 is a nitrate-selective anion channel which is modulated by calcium-dependent protein kinase 32 in pear[J]. BMC Plant Biology, 2019, 19(1): 190.
    [62] ZHOU ZX, WANG J, ZHANG SY, YU QH, LAN HY. Investigation of the nature of CgCDPK and CgbHLH001 interaction and the function of bHLH transcription factor in stress tolerance in Chenopodium glaucum[J]. Frontiers in Plant Science, 2021, 11: 603298.
    [63] WANG JL, GRUBB LE, WANG JY, LIANG XX, LI L, GAO CL, MA MM, FENG F, LI M, LI L, ZHANG XJ, YU FF, XIE Q, CHEN S, ZIPFEL C, MONAGHAN J, ZHOU JM. A regulatory module controlling homeostasis of a plant immune kinase[J]. Molecular Cell, 2018, 69(3): 493-504.e6.
    [64] HUANG Y, WANG WS, YU H, PENG JH, HU ZR, CHEN L. The role of 14-3-3 proteins in plant growth and response to abiotic stress[J]. Plant Cell Reports, 2022, 41(4): 833-852.
    [65] LEMONNIER P, LAWSON T. Calvin cycle and guard cell metabolism impact stomatal function[J]. Seminars in Cell & Developmental Biology, 2024, 155(Pt A): 59-70.
    [66] MOORE CE, MEACHAM-HENSOLD K, LEMONNIER P, SLATTERY RA, BENJAMIN C, BERNACCHI CJ, LAWSON T, CAVANAGH AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems[J]. Journal of Experimental Botany, 2021, 72(8): 2822-2844.
    [67] LI XD, GAO YQ, WU WH, CHEN LM, WANG Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells[J]. Plant Biotechnology Journal, 2022, 20(1): 143-157.
    [68] TANG RJ, ZHAO FG, YANG Y, WANG C, LI KL, KLEIST TJ, LEMAUX PG, LUAN S. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants, 2020, 6: 384-393.
    [69] MAO K, YANG J, WANG M, LIU HY, GUO X, ZHAO S, DONG QL, MA FW. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters[J]. BMC Plant Biology, 2021, 21(1): 81.
    [70] PRODHAN MY, MUNEMASA S, NAHAR MNEN, NAKAMURA Y, MURATA Y. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway[J]. Plant Physiology, 2018, 178(1): 441-450.
    [71] SREENIVASULU N, HARSHAVARDHAN VT, GOVIND G, SEILER C, KOHLI A. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress?[J]. Gene, 2012, 506(2): 265-273.
    [72] LI L, XING J, MA H, LIU FL, WANG YS. In situ determination of guard cell ion flux underpins the mechanism of ABA-mediated stomatal closure in barley plants exposed to PEG-induced drought stress[J]. Environmental and Experimental Botany, 2021, 187: 104468.
    [73] SCHULZE S, DUBEAUX G, CECILIATO PHO, MUNEMASA S, NUHKAT M, YARMOLINSKY D, AGUILAR J, DIAZ R, AZOULAY-SHEMER T, STEINHORST L, OFFENBORN JN, KUDLA J, KOLLIST H, SCHROEDER JI. A role for calcium-dependent protein kinases in differential CO2 and ABA controlled stomatal closing and low CO2-induced stomatal opening in Arabidopsis[J]. The New Phytologist, 2021, 229(5): 2765-2779.
    [74] CHEN DH, LIU HP, LI CL. Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis[J]. Plant Molecular Biology, 2019, 99(1): 113-122.
    [75] CORRATGÉ-FAILLIE C, RONZIER E, SANCHEZ F, PRADO K, KIM JH, LANCIANO S, LEONHARDT N, LACOMBE B, XIONG TC. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33[J]. FEBS Letters, 2017, 591(13): 1982-1992.
    [76] WANG XN, LV S, HAN XY, GUAN XJ, SHI X, KANG JK, ZHANG LS, CAO B, LI C, ZHANG W, WANG GD, ZHANG YH. The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019, 10: 1630.
    [77] LIU ML, WANG CC, XU Q, PAN YH, JIANG BL, ZHANG LT, ZHANG Y, TIAN ZB, LU J, MA CX, CHANG C, ZHANG HP. Genome-wide identification of the CPK gene family in wheat (Triticum aestivum L.) and characterization of TaCPK40 associated with seed dormancy and germination[J]. Plant Physiology and Biochemistry, 2023, 196: 608-623.
    [78] JI RJ, ZHOU LM, LIU JL, WANG Y, YANG L, ZHENG QS, ZHANG C, ZHANG B, GE HM, YANG YH, ZHAO FG, LUAN S, LAN WZ. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana[J]. PLoS One, 2017, 12(3): e0173681.
    [79] GIACOMETTI S, MARRANO CA, BONZA MC, LUONI L, LIMONTA M, de MICHELIS MI. Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63(3): 1215-1224.
    [80] LI Y, GUO JP, YANG ZY, YANG DL. Plasma membrane-localized calcium pumps and copines coordinately regulate pollen germination and fertility in Arabidopsis[J]. International Journal of Molecular Sciences, 2018, 19(6): 1774.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李敏,伍国强,魏明,刘晨. 植物CDPK在响应逆境胁迫中的作用及机制[J]. 生物工程学报, 2024, 40(10): 3337-3359

复制
相关视频

分享
文章指标
  • 点击次数:324
  • 下载次数: 458
  • HTML阅读次数: 413
  • 引用次数: 0
历史
  • 收稿日期:2023-12-07
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6556430位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司