重金属污染水环境的微生物修复技术
作者:
基金项目:

浙江省基础公益研究计划(LGN22C010002)


Microbial remediation of heavy metal-polluted water
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水环境的重金属污染已成为全球环境问题,威胁着水生生态系统和人类健康。传统的物理和化学方法虽然可以有效地去除重金属污染物,但成本高、操作复杂、易造成二次污染,限制了其应用。生物修复是消除多种有毒污染物的有效方法。细菌、真菌、微藻等微生物能将有毒重金属转化为毒性较小的形式,已成为水环境重金属污染修复中有效且环保的解决方案。本文综述了重金属污染的毒性和作用机制、微生物修复机理以及主要的微生物修复策略,为去除或减少水域环境的金属污染物以及进行相关工艺开发提供了参考。

    Abstract:

    Heavy metal pollution in water has become a global environmental problem, threatening aquatic ecosystems and human health. Physical and chemical methods can effectively remove heavy metal pollutants, while their applications are limited due to the high costs, complex operation, and susceptibility to secondary pollution. Bioremediation is the most promising method for eliminating toxic pollutants. Microorganisms including bacteria, fungi, and algae can convert toxic heavy metals into less toxic forms, which has become an effective and environmentally friendly solution for the remediation of heavy metal pollution in water environments. This paper expounds the toxicity and mechanism of heavy metal pollution, microbial remediation mechanisms, and primary microbial remediation strategies, providing a reference for the removal or reduction of metal pollutants in water environments as well as the development of related technologies.

    参考文献
    [1] HOANG HG, CHIANG CF, LIN C, WU CY, LEE CW, CHERUIYOT NK, TRAN HT, BUI XT. Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities[J]. Environmental Pollution, 2021, 285: 117414.
    [2] GARG R, SINGH SK. Treatment technologies for sustainable management of wastewater from iron and steel industry-a review[J]. Environmental Science and Pollution Research International, 2022, 29(50): 75203-75222.
    [3] KUMAR S, PRASAD S, YADAV KK, SHRIVASTAVA M, GUPTA N, NAGAR S, BACH QV, KAMYAB H, KHAN SA, YADAV S, MALAV LC. Hazardous heavy metals contamination of vegetables and food chain: role of sustainable remediation approaches-a review[J]. Environmental Research, 2019, 179(Pt A): 108792.
    [4] ANDERSON A, ANBARASU A, PASUPULETI RR, MANIGANDAN S, PRAVEENKUMAR TR, ARAVIND KUMAR J. Treatment of heavy metals containing wastewater using biodegradable adsorbents: a review of mechanism and future trends[J]. Chemosphere, 2022, 295: 133724.
    [5] AKERMAN-SANCHEZ G, ROJAS-JIMENEZ K. Fungi for the bioremediation of pharmaceutical- derived pollutants: a bioengineering approach to water treatment[J]. Environmental Advances, 2021, 4: 100071.
    [6] ZHAO MM, KOU JB, CHEN YP, XUE LG, FAN TT, WANG SM. Bioremediation of wastewater containing mercury using three newly isolated bacterial strains[J]. Journal of Cleaner Production, 2021, 299: 126869.
    [7] GAO JL, LIU QL, SONG LZ, SHI BY. Risk assessment of heavy metals in pipe scales and loose deposits formed in drinking water distribution systems[J]. Science of the Total Environment, 2019, 652: 1387-1395.
    [8] ABIDLI A, HUANG YF, BEN REJEB Z, ZAOUI A, PARK CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: recent progress, challenges, and future perspectives[J]. Chemosphere, 2022, 292: 133102.
    [9] SARAVANAN A, KUMAR PS, DUC PA, RANGASAMY G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: a sustainable approach[J]. Chemosphere, 2023, 313: 137323.
    [10] LIU SH, ZENG GM, NIU QY, LIU Y, ZHOU L, JIANG LH, TAN XF, XU P, ZHANG C, CHENG M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review[J]. Bioresource Technology, 2017, 224: 25-33.
    [11] REHMAN K, FATIMA F, WAHEED I, AKASH MSH. Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal of Cellular Biochemistry, 2018, 119(1): 157-184.
    [12] HALDAR S, GHOSH A. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review[J]. 3 Biotech, 2020, 10(5): 205.
    [13] DÍAZ S, FRANCISCO P, OLSSON S, AGUILERA Á, GONZÁLEZ-TORIL E, MARTÍN-GONZÁLEZ A. Toxicity, physiological, and ultrastructural effects of arsenic and cadmium on the extremophilic microalga Chlamydomonas acidophila[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1650.
    [14] de ALENCAR FLS, NAVONI JA, DO AMARAL VS. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review[J]. Environmental Science and Pollution Research International, 2017, 24(20): 16545-16559.
    [15] CHEN JQ, WEI JJ, MA C, YANG ZZ, LI ZH, YANG X, WANG MS, ZHANG HQ, HU JW, ZHANG C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement?[J]. Environment International, 2020, 137: 105417.
    [16] PENG M, YANG AQ, CHEN Y, ZHANG GM, MENG F, MA X, LI YY. Microbiology community changes during the start-up and operation of a photosynthetic bacteria-membrane bioreactor for wastewater treatment[J]. Bioresource Technology Reports, 2018(1): 1-8.
    [17] OJUEDERIE OB, BABALOLA OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review[J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1504.
    [18] SRIVASTAVA S, THAKUR IS. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent[J]. Bioresource Technology, 2006, 97(10): 1167-1173.
    [19] IGIRI BE, OKODUWA SIR, IDOKO GO, AKABUOGU EP, ADEYI AO, EJIOGU IK. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review[J]. Journal of Toxicology, 2018: 2568038.
    [20] SARKER A, AL MASUD MA, DEEPO DM, DAS K, NANDI R, ANSARY MWR, ISLAM ARMT, ISLAM T. Biological and green remediation of heavy metal contaminated water and soils: a state-of-the-art review[J]. Chemosphere, 2023, 332: 138861.
    [21] KALIN M, WHEELER WN, MEINRATH G. The removal of uranium from mining waste water using algal/microbial biomass[J]. Journal of Environmental Radioactivity, 2005, 78(2): 151-177.
    [22] GRUJIĆ S, VASIĆ S, RADOJEVIĆ I, ČOMIĆ L, OSTOJIĆ A. Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential[J]. Water, Air, & Soil Pollution, 2017, 228(2): 73.
    [23] LIAQAT I, MUHAMMAD N, ARA C, HANIF U, ANDLEEB S, ARSHAD M, AFTAB MN, RAZA C, MUBIN M. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms[J]. Molecular Biology Reports, 2023, 50(5): 3985-3997.
    [24] PRATUSH A, KUMAR A, HU Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review[J]. International Microbiology, 2018, 21(3): 97-106.
    [25] YAN CC, QU ZZ, WANG JN, CAO LC, HAN QX. Microalgal bioremediation of heavy metal pollution in water: recent advances, challenges, and prospects[J]. Chemosphere, 2022, 286(Pt 3): 131870.
    [26] DAI S, CHEN Q, JIANG M, WANG BQ, XIE ZM, YU N, ZHOU YL, LI S, WANG LY, HUA YJ, TIAN B. Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice[J]. Environmental Pollution, 2021, 284: 117127.
    [27] ZHU NL, ZHANG B, YU QL. Genetic engineering- facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22948-22957.
    [28] XUE YB, DU P, IBRAHIM SHENDI AA, YU B. Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit[J]. Journal of Cleaner Production, 2022, 337: 130524.
    [29] MAHANTY S, CHATTERJEE S, GHOSH S, TUDU P, GAINE T, BAKSHI M, DAS S, DAS P, BHATTACHARYYA S, BANDYOPADHYAY SB, CHAUDHURI P. Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: biofabrication, adsorptive dynamics and chemometric modeling study[J]. Journal of Water Process Engineering, 2020, 37: 101426.
    [30] LI JL, WEBSTER TJ, TIAN B. Functionalized nanomaterial assembling and biosynthesis using the extremophile Deinococcus radiodurans for multifunctional applications[J]. Small, 2019, 15(20): e1900600.
    [31] HOANG AT, NIŽETIĆ S, CHENG CK, LUQUE R, THOMAS S, BANH TL, PHAM VV, NGUYEN XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review[J]. Chemosphere, 2022, 287(Pt 1): 131959.
    [32] YU GL, WANG GL, LI JB, CHI TY, WANG ST, PENG HY, CHEN H, DU CY, JIANG CB, LIU YY, ZHOU L, WU HP. Enhanced Cd2+ and Zn2+ removal from heavy metal wastewater in constructed wetlands with resistant microorganisms[J]. Bioresource Technology, 2020, 316: 123898.
    [33] LIU HT, HONG ZQ, LIN JH, HUANG D, MA LQ, XU JM, DAI ZM. Bacterial coculture enhanced Cd sorption and as bioreduction in co-contaminated systems[J]. Journal of Hazardous Materials, 2023, 444(Pt A): 130376.
    [34] WU CC, TANG D, DAI J, TANG XY, BAO YT, NING JL, ZHEN Q, SONG H, ST LEGER RJ, FANG WG. Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(47): e2214513119.
    [35] ALI MH, MUZAFFAR A, KHAN MI, FAROOQ Q, TANVIR MA, DAWOOD M, HUSSAIN MI. Microbes-assisted phytoremediation of lead and petroleum hydrocarbons contaminated water by water hyacinth[J]. International Journal of Phytoremediation, 2024, 26(3): 405-415.
    [36] JYOTI D, SINHA R, FAGGIO C. Advances in biological methods for the sequestration of heavy metals from water bodies: a review[J]. Environmental Toxicology and Pharmacology, 2022, 94: 103927.
    [37] VÉLEZ-PÉREZ LS, RAMIREZ-NAVA J, HERNÁNDEZ- FLORES G, TALAVERA-MENDOZA O, ESCAMILLA- ALVARADO C, POGGI-VARALDO HM, SOLORZA- FERIA O, LÓPEZ-DÍAZ JA. Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(26): 13757-13766.
    [38] WANG HW, YU TT, LI YH, LIU LF, GAO CF, DING J. Self-sustained bioelectrical reduction system assisted iron-manganese doped metal-organic framework membrane for the treatment of electroplating wastewater[J]. Journal of Cleaner Production, 2022, 331: 129972.
    [39] WU Q, LIU JQ, MO WJ, LI QN, WAN RH, PENG S. Simultaneous treatment of chromium-containing wastewater and electricity generation using a plant cathode-sediment microbial fuel cell: investigation of associated mechanism and influencing factors[J]. Environmental Science and Pollution Research, 2023, 30(14): 41159-41171.
    [40] GALLETTI A, VERLICCHI P, RANIERI E. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium[J]. Science of the Total Environment, 2010, 408(21): 5097-5105.
    [41] SHAHID MJ, ALI S, SHABIR G, SIDDIQUE M, RIZWAN M, SELEIMAN MF, AFZAL M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water[J]. Chemosphere, 2020, 243: 125353.
    [42] WANG YA, ZHANG XH, XIAO L, LIN H. The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity[J]. Environmental Research, 2023, 216(Pt 1): 114451.
    [43] FEI YH, HU YH. Recent progress in removal of heavy metals from wastewater: a comprehensive review[J]. Chemosphere, 2023, 335: 139077.
    [44] SI ZH, WANG YH, SONG XS, CAO X, ZHANG X, SAND W. Mechanism and performance of trace metal removal by continuous-flow constructed wetlands coupled with a micro-electric field[J]. Water Research, 2019, 164: 114937.
    [45] JIANG YT, YANG F, DAI M, ALI I, SHEN X, HOU XT, ALHEWAIRINI SS, PENG CS, NAZ I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: a review[J]. Chemosphere, 2022, 286(Pt 2): 131721.
    [46] WANG JC, ZHAO S, LING ZM, ZHOU TY, LIU P, LI XK. Enhanced removal of trivalent chromium from leather wastewater using engineered bacteria immobilized on magnetic pellets[J]. Science of the Total Environment, 2021, 775: 145647.
    [47] AYANGBENRO AS, BABALOLA OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 94.
    [48] VÉLEZ JMB, MARTÍNEZ JG, OSPINA JT, AGUDELO SO. Bioremediation potential of Pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption[J]. Biotechnology Reports, 2021, 32: e00685.
    [49] PANWICHIAN S, KANTACHOTE D, WITTAYAWEERASAK B, MALLAVARAPU M. Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds[J]. Electronic Journal of Biotechnology, 2011, 14(4): 2-2.
    [50] FILOTE C, ROȘCA M, HLIHOR R, COZMA P, SIMION I, APOSTOL M, GAVRILESCU M. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: current practice[J]. Processes, 2021, 9(10): 1696.
    [51] AL KETIFE AMD, AL MOMANI F, JUDD S. A bioassimilation and bioaccumulation model for the removal of heavy metals from wastewater using algae: new strategy[J]. Process Safety and Environmental Protection, 2020, 144: 52-64.
    [52] SAEED MU, HUSSAIN N, SUMRIN A, SHAHBAZ A, NOOR S, BILAL M, ALEYA L, IQBAL HMN. Microbial bioremediation strategies with wastewater treatment potentialities-a review[J]. Science of the Total Environment, 2022, 818: 151754.
    [53] KUMAR V, DWIVEDI SK. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109734.
    [54] SHI L, XUE JW, LIU BH, DONG PC, WEN ZG, SHEN ZG, CHEN YH. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water[J]. Ecotoxicology and Environmental Safety, 2018, 161: 430-436.
    [55] JIANG YG, SHI MM, SHI L. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements[J]. Science China Life Sciences, 2019, 62(10): 1275-1286.
    [56] LOVLEY DR, HOLMES DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms[J]. Nature Reviews Microbiology, 2022, 20: 5-19.
    [57] NEALSON KH, ROWE AR. Electromicrobiology: realities, grand challenges, goals and predictions[J]. Microbial Biotechnology, 2016, 9(5): 595-600.
    [58] ZHOU SF, SONG D, GU JD, YANG YG, XU MY. Perspectives on microbial electron transfer networks for environmental biotechnology[J]. Frontiers in Microbiology, 2022, 13: 845796.
    [59] RAN Y, SUN DX, LIU X, ZHANG L, NIU ZY, CHAI TY, HU ZL, QIAO K. Chlorella pyrenoidosa as a potential bioremediator: its tolerance and molecular responses to cadmium and lead[J]. Science of the Total Environment, 2024, 912: 168712.
    [60] CHEN GY, ZHAO L, QI Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review[J]. Applied Energy, 2015, 137: 282-291.
    [61] MOHD UDAIYAPPAN AF, ABU HASAN H, TAKRIFF MS, SHEIKH ABDULLAH SR. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment[J]. Journal of Water Process Engineering, 2017, 20: 8-21.
    [62] SALAMA ES, ROH HS, DEV S, ALI KHAN M, ABOU-SHANAB RAI, CHANG SW, JEON BH. Algae as a green technology for heavy metals removal from various wastewater[J]. World Journal of Microbiology and Biotechnology, 2019, 35(5): 75.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王梁燕,戴商,金妙仁,洪奇华. 重金属污染水环境的微生物修复技术[J]. 生物工程学报, 2024, 40(10): 3427-3440

复制
相关视频

分享
文章指标
  • 点击次数:386
  • 下载次数: 468
  • HTML阅读次数: 519
  • 引用次数: 0
历史
  • 收稿日期:2023-12-13
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6564590位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司