水稻黄叶少分蘖突变体yllt10的遗传与定位
作者:
基金项目:

安徽省自然科学基金(2108085MC99);合肥市"借转补"科技专项(J2020G45);安徽省科技重大专项(202003c08020006);浙江省自然科学基金重点项目(LZ23C130004)


Heredity and fine mapping of a yellow leaf and less tillering mutant yllt10 in rice
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    水稻(Oryza sativa L.)是重要的粮食作物,其植株光合作用与肥料利用的效率是决定水稻产量的重要因素。本研究在水稻‘科辐粳7号’的辐射诱变群体中筛选到一个叶片黄化且分蘖减少的突变体,并将其命名为yllt10(yellow leaf and less tillering 10)。与野生型对照相比,该突变体叶片的叶绿素含量降低、叶绿体的结构发育异常、光合作用速率显著下降。遗传分析表明yllt10突变体的表型受单隐性核基因控制,利用图位克隆技术将YLLT10基因定位于水稻第10号染色体J4与J5两个分子标记之间,通过对该区间内的注释基因进行PCR测序,发现在yllt10突变体中CAO1/PGL基因的第1个外显子发生单碱基缺失,从而导致该基因的移码突变,是CAO1/PGL基因的一个新等位变异。此外,在不同氮素浓度种植条件下,yllt10突变体均表现出对氮素不敏感的表型。本研究表明YLLT10基因调控水稻的叶色和分蘖数,影响水稻的光合作用和产量,对该基因的功能机制研究能够为水稻高产育种提供一定的理论依据。

    Abstract:

    Rice (Oryza sativa L.) is a major food crop and increasing rice yield is the primary objective of rice research. Photosynthesis and nitrogen utilization efficiency directly affect the tiller number of rice, which affects the yield of rice. In this study, a stable yellow leaf and less tillering rice mutant yllt10 (yellow leaf and less tillering 10) was obtained by heavy-ion beam mutagenesis of rice variety ‘Ke-fu-geng 7’. Compared with the wild type, yllt10 showed reduced chlorophyll content, decreased photosynthesis rate, and abnormal chloroplast structure. The genetic analysis indicated that the phenotype of yllt10 was controlled by a single recessive nuclear gene. Map-based cloning localized YLLT10 between two molecular markers J4 and J5 on chromosome 10. The sequencing of candidate genes within this interval revealed that YLLT10 was an allelic mutation of CAO1/PGL with a single base deletion in the first exon resulting in the frame shift mutation of CAO1/PGL, and YLLT10 was a new allelic variation of CAO1/PGL. The mutant yllt10 was insensitive to changes in nitrogen concentration when being incubated with different nitrogen concentrations. YLLT10 controls leaf color and tiller number and affects photosynthesis and yield of rice. The study of this gene provides a theoretical basis for molecular breeding of rice.

    参考文献
    [1] LONG SP. Photosynthesis engineered to increase rice yield[J]. Nature Food, 2020, 1: 105.
    [2] 杜文凯, 袁素霞, 胡凤荣. 植物叶色突变分子机制的研究进展[J]. 分子植物育种, 2019, 17(6): 1888-1897.DU WK, YUAN SX, HU FR. Research progress on molecular mechanisms of the leaf color mutation[J]. Molecular Plant Breeding, 2019, 17(6): 1888-1897(in Chinese).
    [3] 邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展[J]. 杂交水稻, 2012, 27(5): 9-14, 30.DENG XJ, ZHANG HQ, WANG Y, SHU ZF, WANG GH, WANG GL. Research advances on rice leaf-color mutant genes[J]. Hybrid Rice, 2012, 27(5): 9-14, 30(in Chinese).
    [4] FALBEL TG, STAEHELIN LA. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophy b-deficient mutants[J]. Physiologia Plantarum, 1996, 97(2): 311-320.
    [5] LI J, YOKOSHO K, LIU S, CAO HR, YAMAJI N, ZHU XG, LIAO H, MA JF, CHEN ZC. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice[J]. Nature Plants, 2020, 6: 848-859.
    [6] QIU ZN, CHEN DD, HE L, ZHANG S, YANG ZN, ZHANG Y, WANG ZW, REN DY, QIAN Q, GUO LB, ZHU L. The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9[J]. Rice, 2018, 11(1): 39.
    [7] MOCHIZUKI N, BRUSSLAN JA, LARKIN R, NAGATANI A, CHORY J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 2053-2058.
    [8] ZHANG HT, LI JJ, YOO JH, YOO SC, CHO SH, KOH HJ, SEO HS, PAEK NC. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 2006, 62(3): 325-337.
    [9] KUSABA M, ITO H, MORITA R, IIDA S, SATO Y, FUJIMOTO M, KAWASAKI S, TANAKA R, HIROCHIKA H, NISHIMURA M, TANAKA A. Rice NON-YELLOW COLORING1 is involved in light- harvesting complex II and grana degradation during leaf senescence[J]. The Plant Cell, 2007, 19(4): 1362-1375.
    [10] MAKINO A, SUZUKI Y, ISHIYAMA K. Enhancing photosynthesis and yield in rice with improved N use efficiency[J]. Plant Science: an International Journal of Experimental Plant Biology, 2022, 325: 111475.
    [11] ZHANG ZG, CUI XA, WANG YW, WU JX, GU XF, LU TG. The RNA editing factor WSP1 is essential for chloroplast development in rice[J]. Molecular Plant, 2017, 10(1): 86-98.
    [12] YONEDA A, WITTMANN BJ, KING JD, BLANKENSHIP RE, DANTAS G. Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410[J]. Photosynthesis Research, 2016, 129(2): 171-182.
    [13] ZHANG WF, TAN LB, SUN HY, ZHAO XH, LIU FX, CAI HW, FU YC, SUN XY, GU P, ZHU ZF, SUN CQ. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Molecular Plant, 2019, 12(8): 1075-1089.
    [14] 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378.LIU YQ, LI WW, LIU XY, CHU CC. Molecular mechanism of tillering response to nitrogen in rice[J]. Hereditas (Beijing), 2023, 45(5): 367-378(in Chinese).
    [15] LI XY, QIAN Q, FU ZM, WANG YH, XIONG GS, ZENG DL, WANG XQ, LIU XF, TENG S, HIROSHI F, YUAN M, LUO D, HAN B, LI JY. Control of tillering in rice[J]. Nature, 2003, 422: 618-621.
    [16] WANG Y, REN T, LU JW, MING R, LI PF, HUSSAIN S, CONG RH, LI XK. Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer[J]. Agronomy Journal, 2016, 108(4): 1717-1725.
    [17] ZHOU W, YAN FJ, CHEN Y, REN WJ. Optimized nitrogen application increases rice yield by improving the quality of tillers[J]. Plant Production Science, 2022, 25(3): 311-319.
    [18] RONG CY, LIU YX, CHANG ZY, LIU ZY, DING YF, DING CQ. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering[J]. Journal of Experimental Botany, 2022, 73(11): 3552-3568.
    [19] ZHANG JY, LIU YX, ZHANG N, HU B, JIN T, XU HR, QIN Y, YAN PX, ZHANG XN, GUO XX, HUI J, CAO SY, WANG X, WANG C, WANG H, QU BY, FAN GY, YUAN LX, GARRIDO-OTER R, CHU CC, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown???剣?乛??央??婡??乲??????婥?啨?????啹伬?????儬??丷?儠??娶?丶???????楛?倰????椠???敘湕捁潎搠楗測朠?捉桁汎漠牙潌瀬栠祆汁汎椠摌攬?慓?潎砠祊本攠湔慁獎敇????椠浃灈慅捎琠獇?氬攠慗晁?獇攠湂敘猬挠敌湉捕攠?愬渠摗?椠湗搬椠牌敉捕琠汘祌?愠晊晉敁捎瑇猠?杚爬愠楚湈?祕椠敃氬搠?慁湉搠?煙甬愠汘楕琠祄?椬渠?牁楎捇攠孃?崬???潎甠牊湍愮氠?潮晨??硣灥敤爠楏浳敎湌瑐愴氭??潎瑩慒渠祣???ち??????????????????????扥爠?学??嵣?呥?乣????????呭佯????吠?乩????删??呭?乥????丠???奥佛半????????传?????????桬汯潧特漠灊桯祵汲汮?慬?漠砲礰朲攱測愠猱改????传??椷猭?椷渶瘮漼汢癲放摛′椱湝?捗桕氠潋爬漠灗桁祎汇氠?打?映潓牏济慇琠楗潚測?晚版潁济?挠桊汑漬爠潗灁桎祇氠汙?愠孌?嵕??倬爠潙捕攠敊摐椬渠杙獅?潙晆?琠桌敉?乓愬琠楃潈湅慎氠??挬愠摚效流祏?潙昬?南捁楎敇渠捊攬猠?潕映?瑋栬攠?啁湎楇琠敍摙?匠瑚慈瑁敎獇?潙晊??浌敉牕椠捂慍????????????????ㄠ??????㈠?????扮牨?孮?づ嵤????塴婡??卡啢乬?堠內??????????啵?乩?剮??卩啥乬?????圠?乩??奯??塮??佥?????坩?乥??全?????乩?倠剭??????剩??娠??丠?????坊?丮??偣剩????丬?′堰????愳瀶?戨愶猴攷搸?挺氠潥湡楡湺朲‰愴渶搮?换桲愾牛愲挲瑝攠牌楉穕愠瑙楑漬渠?潁晎?琠案敒?渠潊癉敁汎?礠敚汍氬漠睗?李片攠敗測?汘敕愠晒?本攠湗敁??椠?祈猬????楎??楚湈?爠楌捉攠???椠?佉牁祎穇愠?猬愠瑏楕瘠慓??椠??孕?嵘??倠汃慁湏琠?偙栬礠獔楏潎汇漠杈祎?愠湗摁??椠潙捈栬攠浚楈獏瑕爠祆??偌偉?????ㄠ?????ㄠ???????戠片?孮??嵩?吠?乡????副??呧?乯????????桬氠潡牤潡灰桴祡汴汩?据礠捴汯攠?牯敩杬甠汮慩瑴敲獯?瑥桮攠?据漠湲獩瑣牥畛捊瑝椮漠湎?慴湵摲?搬攠猲琰爲由挬琠椵漹渰?漠昶‰琰栭收‰氵椮朼桢瑲?桛愲爳癝攠獵瑿椬渠朘?挎漬洠瀴汶改砬攠玸孲?崠???椠漍挭栋椮洠椮接懹?攻璧??槁漨炌栮礩猨楈掇憄??挔瑶懛???そ?ㄠ????????????????????戸爭?嬲?㈠崵?刮?啈畁浏氠?????剕?均???楄潁獉礠湑瑇栬攠獘楕猠?漬映?捁桏氠潈爬漠灈桕祏氠汚?戮?慒湥摳?瑡桲散?挠桰汲潯牧潲灥桳祳氠汯?挠祴捨汥攠孥?嵦??側桳漠瑯潦猠祮湩瑴桲敯獧楥獮?剦敥獲整慩牬捩桺??㈠はの㈠??????????????????批爠?孮??嵮?却??佧??丠???唠?婦???塩?佮乣???卝??坃?乩???????丬?′夰?????丸??堩?????唵′????????奃?????乥??夼?????临????垇?丠??姑???????奉??奋喚????吠楡氁泶旿爠?抌畻擡”晜漠爫淏慛瑊楝漮渠‖牦教杦甬氠愲琰漰爲猨??伺???愭渴搵??佁???捍潗漮瀠敄牥慴瑥楲癭敩汮祡?灩牯潮洠潯瑦攠?瑨楬汯汲敯牰?批畬摬?潡甬琠杣牨潬睯瑲桯?扨祹?慬挠瑢椠癡慮瑤椠湣条??楴??佯乩???楩??敬硥灡牶敥獳猠楢潹渠?楰湥?牴楲捯数孨?嵴???潴汲敹捛畊汝愮爠?偤汵慣湡瑴??????????????????????〨劳??戠爴?嬭??崨?婮??乨??婥女??匮唼乢?堾??‵???塉儠??堠啔??塎??婈??佗?夠?????娠兙????????????乁?乇唠??倬?乌?奕??????丠??夬吠??娠??丠????????????????娠????楆??乘偄???楯???慡?湩潮癧攠汰?慡汮汴攠汧敲?潷晴??業??佡????楳???牯敯杲畤汩慮瑡整獩?灮愠湦楯捲氠敳?慳湴摡?瑮楡汢汬敥爠?摧敲癩散汵潬灴浵敲湥瑛?楝渮?牎楡捴敵孲?崬?′吰栱攸??爵漶瀰??漵甹爵渭愶氰??监ぢ???′??ㄠ??????????扚版?孕??嵚?匠偂剕?乎??删?乌??卐桅慎灇椠湌朮?慃?扲敢瑯瑮支牮?牴楲捯敧?灮氠慭湥瑴孡?嵯??乣愠瑢畡牬敡??敥渺攠瑬楥捳獳?????ひ???????????????扡牛?孝??嵔???啤?????卐???婴夠??婩??乣??堠???圸?丠?″?報??娺??丱?????娳??丼???婛????啌??夠???啋?塍???????剏??兓??乌?充?????婈???奃?义???????湎搠畇挮椠扄汩敦?潥癲敥牮整硩灡牬攠獲獥楧潵湬?潴晩??椠??搠散慨汬?偲汯慰湨瑹??爠捡栠楯瑸敹捧瑥畮牡敳???楥??楳洠灩牮漠癲敩獣?扛潊瑝栮?祐楬敡汮摴?慍湯摬?摣極獬敡慲猠敂?牯敬獯楧獹琬愠渲挰攰‵椬渠‵爷椨挶攩嬺?崸?‵中愸琱甸爮攼?偲氾慛渲琸獝??休ぎ????????????えさ??扇爠?孃??嵌?华????伬吠佄?呉??卐???????剃??????传????????奙????何吠佚?夬??乕???匀????????一唀????夀??匀?吀伀?夀????吀匀唀伀???????挀琀漀瀀椀挀?攀砀瀀爀攀猀猀椀漀渀?漀昀??一伀吀吀????氀椀欀攀?栀漀洀攀漀戀漀砀?瀀爀漀琀攀椀渀?椀渀搀甀挀攀猀?攀砀瀀爀攀猀猀椀漀渀?漀昀?挀礀琀漀欀椀渀椀渀?戀椀漀猀礀渀琀栀攀猀椀猀?最攀渀攀猀?椀渀?爀椀挀攀嬀?崀??倀氀愀渀琀?倀栀礀猀椀漀氀漀最礀???  ??????????????????戀爀?嬀??崀?匀???????刀?????吀??????????刀伀匀??一???渀琀攀爀愀挀琀椀漀渀猀?戀攀琀眀攀攀渀?渀椀琀爀漀最攀渀?愀渀搀?挀礀琀漀欀椀渀椀渀?椀渀?琀栀攀?爀攀最甀氀愀琀椀漀渀?漀昀?洀攀琀愀戀漀氀椀猀洀?愀渀搀?搀攀瘀攀氀漀瀀洀攀渀琀嬀?崀??吀爀攀渀搀猀?椀渀?倀氀愀渀琀?匀挀椀攀渀挀攀???  ???????????? ?????
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李文浩,朱晓彤,罗会超,彭令灵,詹玥,叶亚峰,吴跃进,陶亮之,马伯军,陈析丰,刘斌美. 水稻黄叶少分蘖突变体yllt10的遗传与定位[J]. 生物工程学报, 2024, 40(10): 3471-3484

复制
分享
文章指标
  • 点击次数:172
  • 下载次数: 379
  • HTML阅读次数: 209
  • 引用次数: 0
历史
  • 收稿日期:2023-09-20
  • 在线发布日期: 2024-10-12
  • 出版日期: 2024-10-25
文章二维码
您是第6544390位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司